
Discovering Joining Nodes
and Detecting Leaving Nodes

in the iTrust Membership Protocol
Yung-Ting Chuang, P. M. Melliar-Smith, L. E. Moser, Isaı́ Michel Lombera

Abstract—We present a membership protocol for the iTrust
search and retrieval network. In iTrust, a source node dis-
tributes metadata together with the URL for a document to
a subset of randomly chosen nodes in its local view of the
membership. A requesting node distributes a request (query)
containing keywords to a subset of randomly chosen nodes in its
local view of the membership. If a node receives a request such
that the keywords in the request match metadata that it holds,
then it sends to the requesting node a response containing the
URL, so that the requesting node can retrieve the document
from the source node.

The membership protocol for iTrust allows each member
to have its own local view of the membership. A requesting
node detects a non-operational node by not receiving a response
from that node within a timeout, or by receiving an error code
from TCP. Likewise, a requesting node discovers a newly joined
node when it receives a response from a node that has included
that newly joined node in its view. Our performance evaluation
demonstrates that, for appropriate values of the parameters, the
iTrust membership protocol discovers joining nodes and detects
leaving nodes to maintain a local view of the membership that
is close to the actual membership.

Index Terms—membership protocol, membership churn,
decentralized search and retrieval, trustworthy information
access, iTrust.

I. I NTRODUCTION

UNBIASED and uncensored retrieval of information over
the Internet is crucial for modern society. Currently,

Internet search and retrieval exploits centralized searchen-
gines for reasons of efficiency and economy of scale. Un-
fortunately, it is easy to cause a centralized search engine
to conceal or censor information. To ensure the free flow of
information over the Internet, an alternative to centralized
search – an effective decentralized, distributed search – must
be provided.

The iTrust system [1], [4], [10], [11] is a decentralized
and distributed search and retrieval system, that is designed
to make it difficult to censor or filter information accessed
over the Internet. Metadata and requests are “public,” because
nodes must be able to match the keywords in the requests
against the metadata that they hold. The communication cost
for iTrust is greater than that for centralized search engines.

Manuscript received December 6, 2012; revised January 9, 2013.
This research was supported in part by the U.S. National Science

Foundation under grant number NSF CNS 10-16193.
Y. T. Chuang is with the Department of Electrical and Computer En-

gineering, University of California, Santa Barbara, CA, 93106, e-mail:
ytchuang@ece.ucsb.edu

P. M. Melliar-Smith, L. E. Moser, and I. Michel Lombera are with
the Department of Electrical and Computer Engineering, University
of California, Santa Barbara, CA, 93106, email: pmms@ece.ucsb.edu,
moser@ece.ucsb.edu, imichel@ece.ucsb.edu

However, if users suspect that information important to them
is being censored or suppressed, they should be willing
to incur that extra cost. Nonetheless, in iTrust, we try to
minimize any additional unnecessary cost.

In this paper, we describe a membership protocol for the
iTrust search and retrieval network. Themembership consists
of the nodes that participate in the iTrust network (also
referred to as theparticipating nodes). Each node has a
local view of themembership, which approximates the actual
membership of the iTrust network.

An extensive literature on membership exists, but most of
that work is not relevant to iTrust. The membership protocol
for iTrust is simpler and less costly than prior membership
protocols [3], because iTrust does not attempt to achieve an
agreed accurate membership based on a consensus algorithm,
which is known to be impossible [2].

II. T HE ITRUST MESSAGINGPROTOCOL

First, we briefly describe the iTrust messaging protocol,
because the iTrust membership protocol is dependent on it.
The steps involved in the iTrust messaging protocol are given
below and are illustrated in Figure 1.

1) A node with information to share (asource node)
distributes metadata for that information to a subset
of nodes chosen uniformly at random from its local
view of the membership.

2) A node that needs information (arequesting node)
distributes a request (query) containing keywords for
that information to a subset of nodes chosen uniformly
at random from its local view of the membership.

3) When a node receives a request containing keywords
that match metadata that it holds, anencounter occurs
and the matching node provides, to the requesting
node, the URL for the information, so that the request-
ing node can retrieve the information from the source
node.

4) The requesting node then retrieves the information
from the source node using the URL provided by the
matching node.

A match between the keywords in a request received by a
node and the metadata held by that node might be an exact
match or a partial match, or might correspond to synonyms.

Distribution of the metadata and the requests to relatively
few nodes suffices to achieve a high probability of a match.
As we have shown in [10], in an iTrust membership withN
nodes, distribution of the metadata toM = 2

√
N nodes and

distribution of the requests toR = 2
√
N nodes results in a

probability of a match that exceeds1− e−4 ≈ 0.9817.



Fig. 1. (a) A source node distributes metadata, describing its information, to a subset of nodes chosen uniformly at random from its local view of the
membership. (b) A requesting node distributes its request (query) to a subset of nodes chosen uniformly at random from its local view of the membership.
(c) One of the nodes matches the metadata and the request, andreports the match to the requesting node, which then retrieves the information from the
source node.

III. T HE ITRUST MEMBERSHIPPROTOCOL

In an iTrust network, nodes canjoin the membership at
any time; likewise, nodes canleave the membership at any
time, either voluntarily or by crashing.

The membership protocol for iTrust does not aim to
achieve an agreed accurate membership that is the same for
all members. Rather, it allows each member to have its own
local view of the membership, but aims to keep that local
view close to the actual membership.

A. Joining the Membership

To join the membership, a node must first obtain the
address of a bootstrapping node. To obtain the address of
the bootstrapping node, the node uses mechanisms outside
the iTrust network, such as conventional Web search, E-mail,
Twitter, printed publications,etc.

The steps involved when a node joins the membership are
given below, and are illustrated in Figure 2.

1) The joining node contacts the boostrapping node, us-
ing the address it previously obtained, to obtain the
bootstrapping node’s current view of the membership.

2) The joining node then publishes its joining the mem-
bership to a subset of nodes chosen uniformly at
random from the current view of the membership it
obtained from the bootstrapping node.

3) Those nodes then add the new node to their local views
of the membership.

Another node learns about the new node when it receives
a response from a node that is aware of the new node.

B. Leaving the Membership

A node may leave the membership either voluntarily,
or because it is faulty. The steps involved in leaving the
membership are simple:

1) To leave the membership, a node just leaves, without
publishing its leaving.

Over time, each node individually discovers the departure
of nodes when it sends requests to nodes that do not respond.
It is not appropriate to allow a node to publish the departure
of another node, because doing so can enable a malicious
node to cause a requesting node to remove many nodes from
its local view of the membership.

C. Updating the Membership

In the messaging protocol described in Section II, a
requesting node expects to receive response messages from
the matching nodes. Other nodes that don’t have a match are
not required to send a response to the requesting node. We
now modify that messaging protocol to enable a requesting
node to discover newly joined nodes and to detect non-
operational (leaving) nodes from the responses to its requests.

Now, the requesting node expects each node to which it
sent a request to respond to its request with its recently joined
member(s), regardless of whether or not it has a match. A
matching node sends in its response to the requesting node
not only the URL of the document at the source node but also
its recently joined member(s). If it does not have a match, a
node simply responds to the requesting node with its recently
joined member(s). Thus, the requesting node discovers not
only the URLs of the documents, but also some newly joined
nodes through the responses to its requests.

If the requesting node doesn’t receive a response from a
node within a timeout period or it receives an error code
from TCP, then the non-responding node is considered to
have left the membership or to be faulty and the requesting
node removes that node from its view of the membership.

The steps involved in updating a requesting node’s view
of the membership are given below, and are illustrated in
Figure 2(b) and (c).

1) A requesting node distributes its request to a subset
of randomly chosen nodes in its local view of the
membership.

2) A node that receives the request compares the key-
words in the request with the metadata that it holds.
If it finds a match, the matching node responds to
the requesting node with a message that contains the
URL of the associated information and also its recently
joined member(s). A node that doesn’t find a match
responds to the requesting node with a message that
contains its recently joined member(s).

3) When the requesting node receives the responses, it
adds the newly joined members obtained from the other
nodes to its view of the membership.

4) If the requesting node does not receive a response from
a node to which it sent a request, before a timeout
occurs, or if it receives an error code from TCP, then
the non-responding node is considered to have left
the membership or to be faulty, and the requesting



Fig. 2. (a) A node joins the membership by first contacting a bootstrapping node to obtain that node’s current view of the membership, and then publishing
its joining to randomly chosen nodes in its current view of the membership. (b) A requesting node distributes a request tonodes randomly chosen from its
current view of the membership. A node that receives the request returns the members(s) that it recently added to its membership. A matching node also
returns the URL of the document at the source node to the requesting node. The requesting node adds the new nodes to its viewof the membership. (c)
The requesting node does not receive a response to its request from a non-operational node. The requesting node sees a timeout expire or gets an error code
from TCP, and then removes the node from its membership.

node removes that node from its local view of the
membership.

If the requesting node is also a source node then, after re-
ceiving the responses to its request, it distributes its metadata
to additional nodes according to the following steps:

1) The requesting (source) node calculates the number
of nodes to which it needs to distribute its metadata,
according to its current view of the membership.

2) Next, the requesting node subtracts the number of
nodes to which it previously distributed metadata from
the number it just calculated in the previous step.

3) The requesting node then distributes its metadata to
that many additional nodes, chosen at random from its
current view of the membership, but to which it had
not sent the metadata previously.

For example, suppose that a requesting node currently has
N = 1024 nodes in its current view of the membership.
It distributes its request to2

√
1024 = 64 nodes, chosen at

random. Suppose that only 58 nodes reply to the requesting
node. From the responses to this request, the requesting node
detects that there are64 − 58 = 6 non-operational nodes.
Suppose further that, as a result of receiving the responses
from the 58 nodes, the requesting node adds 40 new nodes
to its membership. Consequently, the requesting node now
hasN = 1024− 6+ 40 = 1058 nodes in its membership. If
the requesting node is also a source node, then it distributes
its metadata to2

√
1058−2

√
1024 = 65−64 = 1 more node

in its local view of the membership.

IV. PERFORMANCEEVALUATION

A. Simulation Experiments

To evaluate the iTrust membership protocol, we performed
experiments using a simulation of iTrust. The simulation
allows us to evaluate the performance of the membership
protocol, whereas a real-world deployment of iTrust would
not allow us to do so, because in the simulation we can
control the joining rate and the leaving rate of the nodes.
Moreover, we can compare a node’s current view of the
membership against the actual membership.

Before we start the simulation program, we initialize the
value ofN . Next, the program adds all of the nodes to each
node’s membership so that each node has the complete initial
membership. Then, for each time step, nodes make requests

while other nodes are joining and leaving the membership.
Finally, the program compares each node’s view of the
membership against the actual membership.

B. Membership Churn

Membership churn refers to nodes joining and leaving the
membership, and is represented by the following rates:

• JR: The Joining Rate, the number of nodes that join
the membership per time unit. For example,JR = 50

means that 50 nodes join the membership per time unit.
• LR: The Leaving Rate, the number of nodes that leave

the membership per time unit. For example,LR = 50

means that 50 nodes leave the membership per time
unit.

When there is a lot of membership churn, bothJR andLR
are high. When the membership is stable, bothJR andLR
are low. These rates are an important consideration for the
membership protocol.

C. Parameters of the iTrust Membership Protocol

The parameters of the iTrust membership protocol are the
following:

• RR: The Requesting Rate, the number of times a node
sends a request message to2

√
N nodes per time unit.

For example,RR = 10 means that a node sends 10
distinct request message per time unit, each of which is
sent to2

√
N nodes.

• LastJ : The Last Joined members, the number of re-
cently joined members a node may report back to the
requesting node. For example,LastJ = 2 tells a node
to report its two most recently joined members to the
requesting node.

D. Performance Metrics

For the performance evaluation, we use the following
performance metrics:

• LND: The Leaving Not Detected nodes, the proportion
of non-operational nodes that a requesting node has not
detected in a given time unit.

• JND: The Joining Not Discovered nodes, the propor-
tion of newly joined nodes that a requesting node has
not discovered in a given time unit.



E. Tuning the Parameters

1) Determining an Appropriate Value of LastJ: The
parameterLastJ is used to discover newly joined nodes, but
it doesn’t help much in detecting leaving or non-operational
nodes, as discussed below.

In our membership protocol, a requesting node distributes
its request to2

√
N nodes chosen at random from its lo-

cal view of the membership. Initially, we required those
nodes to return their entire memberships to the requesting
node, and the requesting node to update its membership
accordingly. The problem is that the requesting node obtains
some non-operational nodes from other nodes that haven’t
yet discovered that those nodes are non-operational. Thus,
the requesting node adds back into its membership too
many non-operational nodes, including nodes that it recently
removed. The requesting node can’t distinguish between such
non-operational nodes that left the membership, and nodes
that left the membership and recently re-joined.

There are several possible solutions to this problem. One
solution is that, once a requesting node has obtained the
memberships from the other nodes, it sends a “verify”
message to confirm whether or not each of those nodes is op-
erational. Such a solution consumes a lot of communication
bandwidth. Another solution is to require the2

√
N nodes

to return their most recently joined members, rather than
their entire memberships, to the requesting node. We adopt
the latter solution and letLastJ be the maximum number
of recently joined members that a node may return. We
investigate howLastJ affectsLND (Leaves Not Detected)
andJND (Joins Not Discovered).

We consider a scenario in which there areN = 1024 nodes
with a high leaving rate (LR = 500), a high joining rate
(JR = 500), and a low requesting rate (RR = 10). Figure
3 shows the graphs forLND andJND over time for this
scenario withLastJ = 1, LastJ = 2 and LastJ = 3.
IncreasingLastJ from LastJ = 1 in the left graph to
LastJ = 2 in the middle graph, we see thatJND decreases
but that LND increases. IncreasingLastJ further from
LastJ = 2 in the middle graph toLastJ = 3 in the right
graph, we see thatJND decreases further and thatLND
increases further to about 0.9.

Thus, increasingLastJ definitely helps the requesting
node to discover more joining nodes as it issues more re-
quests. However, increasingLastJ also causes the requesting
node to add back into its local view of the membership too
many non-operational nodes. The reason is that a requesting
node can detect at most2

√
N non-operational nodes from

the responses to each of its requests. However, ifLastJ = 2,
then the requesting node can discover up to2∗2

√
N = 4

√
N

newly joined nodes from the responses to each of its requests.
Doing so forLastJ = 2 actually increasesLND with worse
results than forLastJ = 1. Similarly, whenLastJ = 3,
LND increases even more compared to whenLastJ = 2.
We conclude thatLastJ = 1 is an appropriate value for
our further experiments. Thus, a node can discover about
the same number of non-operational and newly joined nodes
from the responses to each of its requests, and doesn’t add
back into its local view of the membership too many non-
operational nodes.

2) Determining an Appropriate Value of RR: As we have
just seen, increasingLastJ does not help to detect non-

operational or leaving nodes. Thus, we now investigate how
increasing the requesting rateRR affects the detection of
non-operational nodes.

Figure 4 shows graphs forLND andJND over time for
RR = 10, RR = 50 and RR = 100, whereN = 1024

initially, LastJ = 1, JR = 500 andLR = 500. WhenRR
is increased fromRR = 10 in the left graph toRR = 50 in
the middle graph, bothJND andLND greatly decrease. In
fact, JND decreases to almost zero in theRR = 50 case.
WhenRR is increased further fromRR = 50 in the middle
graph toRR = 100 in the right graph,LND decreases and
becomes close to 0.1, andJND still remains close to 0.

From Figure 3 and Figure 4, we conclude that increasing
RR is more effective in decreasing bothLND and JND
than increasingLastJ . Thus, we useRR = 100 in our
further experiments.

3) Investigating Different Values of LR and JR: Here,
we use the valuesLastJ = 1 andRR = 100 as determined
by our previous experiments, whereN = 1024 initially.

Figure 5 shows graphs forLND and JND over time
for LR = JR = 500, LR = JR = 1000 andLR = JR =

2000. In the left graph of Figure 5, we see thatJND remains
zero from the beginning to the end of the scenario and that
LND slowly increases to 0.08 and remains there until the
end of the scenario.

WhenLR andJR are increased fromLR = JR = 500

in the left graph toLR = JR = 1000 in the middle graph,
JND still remains close to zero from the beginning to the
end of the scenario, butLND increases to about 0.113. We
had expected thatLND would also increase, but it does not
increase very much, even thoughLR andJR are twice as
large as they were in the left graph.

WhenLR andJR are further increased fromLR = JR =

1000 in the middle graph toLR = JR = 2000 in the right
graph,JND increases a little to about 0.02 andLND now
increases to about 0.22, perhaps a little higher than we would
wish. Even thoughLR andJR are much higher than in the
left graph and the middle graph, bothJND andLND still
remain reasonably small.

In addition, we investigatedLND and JND for LR =

JR = 2000 and RR = 200 and also forLR = JR =

3000 andRR = 300. In these two cases, we obtain similar
results to those in the middle graph of Figure 4 and in the
middle graph of Figure 5. Note that, in all of these cases,
RR = LR/10 = JR/10. Currently, we are investigating a
membership protocol for iTrust that modifiesRR adaptively,
so thatJND andLND remain small, while minimizing the
additional overhead due to larger values ofRR.

From Figure 3, Figure 4 and Figure 5, we conclude that,
for appropriate choices ofLR, JR andRR, our membership
protocol is effective, in that a node maintains its local view
of the membership very close to the actual membership, even
when the membership churn is high.

V. RELATED WORK

Peer-to-peer networks for distributed search have been
characterized as structured or unstructured [12]. The struc-
tured approach requires the nodes to be organized in an
overlay network, based on a distributed hash table, tree,
ring, etc. The unstructured approach uses randomization
and/or gossiping to distribute the metadata (or data) and the



Fig. 3. Graphs showingLND andJND over time forLastJ = 1, LastJ = 2 andLastJ = 3, whereN = 1024 initially, RR = 10, LR = 500

andJR = 500

Fig. 4. Graphs showingLND andJND over time forRR = 10, RR = 50 andRR = 100, whereN = 1024 initially, LastJ = 1, LR = 500 and
JR = 500.

Fig. 5. Graphs showingLND andJND over time forJR = LR = 500, JR = LR = 1000, andJR = LR = 2000, whereN = 1024 initially,
LastJ = 1 andRR = 100.

queries to nodes in the network. The iTrust system uses the
unstructured approach.

Cohen and Shenker [5] demonstrate that square root
replication is theoretically optimal for minimizing search
traffic, and replicate objects based on the access frequencies
(popularities) of the objects. Lvet al. [9], in conjunction
with Cohen and Shenker, use square root replication, and
adaptively adjust the replication degree based on the query
rate. iTrust likewise exploits square root replication, but
distributes the metadata and requests uniformly at random,
so that popular nodes are not more vulnerable to attacks.

Prior work on membership has focused on an agreed
accurate membership in the presence of unreliable processors
and unreliable communication. Chandraet al. [2] show that
it is impossible to achieve an agreed accurate membership.
Chockler et al. [3] provide a comprehensive survey of
membership protocols and group communication systems,
and of their formal specifications. Schiper and Toueg [13]
provide an elegant formalization of the membership problem
that distinguishes between the problem of maintaining and
agreeing on a set of members and the problem of determining
which processes are working and should be members. Our
membership protocol for iTrust is simpler and less costly than
such prior work. It does not aim to achieve an agreed accurate
membership based on a consensus algorithm. Rather, it
allows each member to have its own local view of the
membership, but aims to keep that local view close to the
actual membership.

In BubbleStorm [7], [14], when a node wishes to join the
network, it finds an existing connection between two peers
and interposes the joining node between them. When a node
leaves the network, it re-connects those two peers before
leaving. Thus, BubbleStorm preserves a fixed node degree at
all of the nodes. Our membership protocol for iTrust does not
restrict the nodes to a fixed node degree but, rather, allows
each node to maintain its local view of the membership.

SCAMP [6] is a peer-to-peer membership service for
gossip-based protocols that operates in a decentralized and
self-configured manner, where no peer has global knowl-
edge of the membership. A node that wishes to join the
membership notifies some nodes in the network to add it
to their memberships. Similarly, a node that wishes to leave
the membership notifies some nodes to remove it from their
memberships. To prevent a node from becoming isolated,
each node periodically tries to discover new nodes when it
does not receive messages in a given time period. In contrast,
our membership protocol for iTrust places more emphasis on
maintaining the membership when the churn rate is high.

Zageet al. [16] present a network-aware and distributed
membership protocol that improves the overall performance
of a peer-to-peer overlay network by biasing neighbor se-
lections towards beneficial nodes, based on multiple system
metrics and network social patterns. In the iTrust mem-
bership protocol, nodes do not maintain their views of the
membership through biased neighbor selections. Rather, they
discover newly joined and leaving nodes by communication



with randomly chosen nodes in the normal course of search
and retrieval

Liu et al. [8] describe a novel age-based membership
protocol with a conservative neighbor maintenance scheme
under churn, to retain desirable properties such as a low
network diameter and clustering coefficient. Thus, a boot-
strapping node recommends to a newly joining node only the
nodes that have remained in its membership for a long time.
However, with this strategy, a newly joining node might not
discover the other nodes in the membership very quickly. In
the iTrust membership protocol, a boostrapping node sends
its entire membership to a newly joining node.

Voulgaris et al. [15] present an inexpensive membership
management protocol for unstructured peer-to-peer overlay
networks. The goal of CYCLON is to have each node
maintain a small and fixed-size neighbor list. The authors
describe a shuffling protocol for large networks and provide
an experimental analysis in which they examine the clus-
tering coefficient and node degree distribution. The iTrust
membership protocol differs from CYCLON in that each
node tries to discover as many nodes as possible to include in
its local view of the membership. In [1], we have investigated
the use of neighborhoods and de-clustering (shuffling) for
very large iTrust networks.

VI. CONCLUSION

We have presented a membership protocol for the iTrust
search and retrieval network. The membership protocol for
iTrust allows each member to maintain its own local view
of the membership, but aims to keep that local view close
to the actual membership. A node that receives a request
sends to the requesting node a response that contains newly
joined node(s) in its local view of the membership. The node
also sends in its response the URL of the document, if the
keywords in the query match metadata that it holds.

A requesting node discovers newly joined nodes from the
responses it receives to its requests, which include newly
joined node(s) in the responding node’s view of the mem-
bership. Likewise, a requesting node detects nodes that are
non-operational or that have left the membership, as a result
of not having received responses from those nodes before a
timeout occurs, or on receiving an error code from TCP.
Thus, the iTrust membership protocol exploits messages
already required by the iTrust messaging protocol for search
and retrieval, rather than additional messages used only for
membership. As our performance evaluation demonstrates,
for appropriate values of the parameters, the iTrust mem-
bership protocol discovers joining nodes and detects leaving
nodes to maintain a local view of the membership that is
close to the actual membership.

In the future, we plan to continue our investigation of
the performance of the iTrust membership protocol in other
scenarios. We also plan to develop an adaptive membership
protocol for iTrust, where each node increases its rate of
sending requests as it detects non-operational nodes that do
not respond to requests and as it discovers new nodes that
recently joined the membership. In addition, we plan to ad-
dress nodes that exhibit malicious behavior when responding
to requests.

REFERENCES

[1] C. M. Badger, L. E. Moser, P. M. Melliar-Smith, I. Michel Lombera,
and Y. T. Chuang. Declustering the iTrust search and retrieval network
to increase trustworthiness. InProceedings of the 8th International
Conference on Web Information Systems and Technologies, pages 312–
322, Porto, Portugal, April 2012.

[2] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the
impossibility of group membership. InProceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing,
pages 322–330, 1996.

[3] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication
specifications: A comprehensive study.ACM Computing Surveys,
33(4):427–469, 2001.

[4] Y. T. Chuang, I. Michel Lombera, L. E. Moser, and P. M. Melliar-
Smith. Trustworthy distributed search and retrieval over the Internet.
In Proceedings of the International Conference on Internet Computing,
pages 169–175, Las Vegas, NV, July 2011.

[5] E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. InProceedings of the ACM Special Interest Group
on Data Communications Conference, pages 177–190, Pittsburgh, PA,
August 2002.

[6] A. Ganesh, A. M. Kermarrec, and L. Massoulie. Peer-to-peer mem-
bership management for gossip-based protocols.IEEE Transactions
on Computers, 52(2):139–149, February 2003.

[7] C. Leng, W. W. Terpstra, B. Kemme, W. Stannat, and A. P. Buchmann.
Maintaining replicas in unstructured P2P systems. InProceedings
of the ACM Conference on Emerging Networking Experiments and
Technologies, page 19, Madrid, Spain, December 2008.

[8] H. Liu, X. Liu, W. Song, and W. Wen. An age-based membership
protocol against strong churn in unstructured P2P networks. In Pro-
ceedings of the 2011 International Conference on Network Computing
and Information Security, volume 2, pages 195–200, Guilin, China,
May 2011.

[9] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. InProceedings of the 16th
International Conference on Supercomputing, pages 84–95, Baltimore,
MD, June 2002.

[10] P. M. Melliar-Smith, L. E. Moser, I. Michel Lombera, andY. T.
Chuang. iTrust: Trustworthy information publication, search and
retrieval. In Proceedings of the 13th International Conference on
Distributed Computing and Networking, pages 351–366, Hong Kong,
China, January 2012.

[11] I. Michel Lombera, Y. T. Chuang, P. M. Melliar-Smith, and L. E.
Moser. Trustworthy distribution and retrieval of information over
HTTP and the Internet. InProceedings of the 3rd International
Conference on the Evolving Internet, pages 7–13, Luxembourg City,
Luxembourg, June 2011.

[12] J. Mischke and B. Stiller. A methodology for the design of distributed
search in P2P middleware.IEEE Network, 18(1):30–37, 2004.

[13] A. Schiper and S. Toueg. From set membership to group membership:
A separation of concerns.IEEE Transactions on Dependable and
Secure Computing, 3(1):2–12, 2006.

[14] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. Bub-
blestorm: Resilient, probabilistic, and exhaustive peer-to-peer search.
In Proceedings of the ACM Conference on Applications, Technologies,
Architectures and Protocols for Computer Communications, pages 49–
60, Kyoto, Japan, August 2007.

[15] S. Voulgaris, D. Gavidia, and M. Van Steen. CYCLON: Inexpensive
membership management for unstructured P2P overlays.Journal of
Network and Systems Management, 13(2):197–217, June 2005.

[16] D. Zage, C. Livadas, and E. M. Schooler. A network-awaredistributed
membership protocol for collaborative defense. InProceedings of the
International Conference on Computational Science and Engineering,
volume 4, pages 1123–1130, 2009.


