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Abstract—This paper presents novel statistical algorithms for
detecting and defending against malicious attacks in the iTrust
information retrieval network. The novel detection algorithm
determines empirically the probabilities of the exact numbers of
matches based on the number of responses that the requesting
node receives. It calculates analytically the probabilities of
the exact numbers of matches and the probabilities of one
or more matches when some proportion of the nodes have
been subverted or are non-operational. It compares the em-

pirical and analytical probabilities to estimate the proportion
of subverted or non-operational nodes. The novel defensive
adaptation algorithm then increases the number of nodes
to which the metadata and the requests are distributed to
maintain the same probability of a match when some of the
nodes are subverted or non-operational as when all of the
nodes are operational. Experimental results substantiate the
effectiveness of the statistical algorithms for detecting and
defending against malicious attacks.
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I. INTRODUCTION

Modern society depends on retrieval of information over

the Internet. For reasons of efficiency, Internet search and

retrieval exploits centralized search engines, and assumes

that they are unbiased. Unfortunately, it is easy to cause

an Internet search engine to conceal or censor information.

The experience of history, and of today, demonstrates that

we cannot depend on centralized search engines to remain

unbiased. The moment at which society is most dependent

on the free flow of information across the Internet might

also be the moment at which information is most likely to

be censored or suppressed.

The iTrust system [2], [13] is a decentralized and dis-

tributed information retrieval system, that is designed to

defend against censorship of information on the Internet.

In iTrust, metadata describing documents, and requests

(queries) containing metadata (keywords), are randomly

distributed to multiple participating nodes. The nodes that

receive the requests try to match the keywords in the

requests with the metadata they hold. Crucial performance

parameters of iTrust are the numbers of nodes to which the

metadata and the requests must be distributed to achieve

a high probability of achieving a match. In a network of

n participating nodes, distribution of the metadata and the

requests to 2
√
n nodes results in a probability of a match

that exceeds 1 − e−4 ≈ 0.9817. The communication cost

of iTrust is greater than that of a centralized search engine

but, if users are concerned about censorship or suppresion of

information, they should be willing to incur that extra cost.

The decentralized and distributed nature of iTrust makes

it very robust against malicious attacks that aim to prevent

information retrieval. One specific kind of malicious attack

is to insert into the network a large number of nodes that

behave normally except that they do not match requests

and metadata on certain topics. The appropriate response

to such an attack is to increase the number of nodes to

which the metadata and the requests are distributed, to

restore the probability of a match to the desired level. This

paper presents novel statistical algorithms for detecting such

malicious attacks and for adaptively defending against them.

II. DESIGN OF ITRUST

The iTrust information retrieval system is completely

distributed, and involves no centralized mechanisms and no

centralized control. We refer to the nodes that participate

in an iTrust network as the participating nodes or the

membership. Multiple iTrust networks may exist at any

point in time, and a node may participate in multiple iTrust

networks at the same point in time.

In iTrust, some nodes, the source nodes, produce in-

formation, and make that information available to other

participating nodes. The source nodes produce metadata that

describes their information, and distribute that metadata to a

subset of the participating nodes chosen at random, as shown

in Figure 1. The metadata are distinct from the information

they describe, and include a list of keywords and the URL

of the source of the information.

Other nodes, the requesting nodes, request and retrieve

information. Such nodes generate requests (queries) that

refer to metadata for the desired information, and distribute

their requests to a subset of the participating nodes chosen

at random, as shown in Figure 2.

The participating nodes compare the metadata in the

requests they receive with the metadata they hold. If such a

node finds a match, which we call an encounter, the match-

ing node returns the URL of the associated information to

the requesting node. The requesting node then uses the URL



Figure 1. A source node distributes metadata,
describing its information, to randomly selected
nodes in the network.

Figure 2. A requesting node distributes its re-
quest to randomly selected nodes in the network.
One of the nodes has both the metadata and the
request and, thus, an encounter occurs.

Figure 3. A node matches the metadata and the
request and reports the match to the requester,
which then retrieves the information from the
source node.

to retrieve the information from the source node, as shown

in Figure 3.

III. IMPLEMENTATION OF ITRUST

The iTrust system runs on laptop, desktop or server nodes

over the Internet. There might be hundreds or thousands

of iTrust nodes in a typical iTrust network. The primary

goal of each iTrust node is to match a query it receives

with metadata it holds and to respond with a URL for that

resource, if an encounter occurs.

The iTrust implementation on a node consists of the Web

server foundation, the application infrastructure, and the

public interface. These three components interact with each

other to distribute metadata and requests, and to retrieve

resources from the nodes.

The iTrust implementation utilizes the Apache Web server

along with several PHP modules and library extensions. In

particular, it uses the standard session and logging modules,

and the compiled-in cURL, SQLite, and HTTP PHP Exten-

sion Community Library (PECL) modules.

The iTrust system operates over HTTP and, thus, TCP/IP.

As such, it establishes a direct connection between any two

nodes that need to communicate; the iTrust implementation

uses neither flooding nor random walks.

The iTrust system replicates both the metadata and the

requests (queries). A source node randomly selects nodes

for distribution of metadata, and a requesting node randomly

selects nodes for distribution of requests. At each node,

iTrust maintains a local index of metadata and URLs for

the corresponding resources.

When a node receives a request, it compares the metadata

keywords in the request (query) against an SQLite database

consisting of metadata and URLs. If the metadata keywords

in the request match locally stored metadata, the node

sends a response containing the URL corresponding to the

metadata to the requester. When the requesting node receives

the response, it uses the URL in the request to retrieve the

information from the source node.

IV. FOUNDATIONS

A. Assumptions and Notation

We assume that all of the participating nodes in an

iTrust network have the same membership set. Moreover,

we assume that the underlying Internet delivers messages

reliably and that the nodes have enough memory to store

the source files and metadata that the nodes generate and

receive. If a node receives a request and it holds metadata

matching the request, we say that a match occurs.

The primary parameters determining the performance of

the iTrust system are:

• n: The number of participating nodes (i.e., the size of

the membership set)

• x: The proportion of the n participating nodes that

are operational (i.e., 1 − x is the proportion of non-

operational nodes)

• m: The number of participating nodes to which the

metadata are distributed

• r: The number of participating nodes to which the

requests are distributed

• k: The number of participating nodes that report

matches to a requesting node.

B. Probabilistic Analysis

Our probabilistic analysis of iTrust is based on the hy-

pergeometric distribution [6], which describes the number

of successes in a sequence of random draws from a finite

population without replacement. Thus, it differs from the

binomial distribution, which describes the number of suc-

cesses for random draws with replacement. In iTrust, the

probability of exactly k matches follows a hypergeometric

distribution with parameters n, x, m and r, and is given by:

P (k) =

(

mx

k

)(

n−mx

r−k

)

(

n

r

) (1)

for mx+ r ≤ n and k ≤ min{mx, r}.
Thus, if the iTrust membership set contains n participating

nodes, the proportion of the participating nodes that are op-

erational is x, the metadata are delivered to m participating

nodes, and a request is delivered to r participating nodes,

then the probability of exactly k matches is given by:
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for mx+ r ≤ n and k ≤ min{mx, r}.



If the iTrust membership set contains n participating

nodes, the proportion of the participating nodes that are op-

erational is x, the metadata are delivered to m participating

nodes, and a request is delivered to r participating nodes,

then the probability of one or more matches is given by:

P (k ≥ 1) = 1−
(n−mx

r

n−mx−1

r−1
. . . n−mx−r+1

1
)

(n
r

n−1

r−1
. . . n−r+1

1
)

(3)

for mx+ r ≤ n.

For an iTrust network with n = 1000 nodes and x = 1.0,
0.7, 0.4, 0.2 operational nodes, Figure 4 shows the results

for the probabilities of one or more matches, obtained from

Equation (3), as the number of nodes to which the metadata

and the requests are distributed increases.

Figure 4. The probabilities of one or more matches as the number of
nodes to which the metadata and the requests are distributed increases, for
different proportions of operational nodes.

V. DETECTING MALICIOUS ATTACKS

For given values of n, m and r, the algorithm for

detecting malicious attacks collects statistical data on the

number of responses that a requesting node has received

for a number of requests. Then, it computes the analytical

probabilities of the exact number of matches for n, m and

r and for different values of x. Finally, it compares the

empirical probabilities against the analytical probabilities of

exact number of matches to estimate the proportion x′ of

operational nodes in the iTrust network.

For example, consider an iTrust network with n = 1000
participating nodes where both the metadata and the re-

quests are distributed to m = r = 60 nodes. Figure 5

shows the probabilities of the exact number of matches

for x = 1.0, 0.7, 0.4, 0.2 operational nodes. If the detection
algorithm observes a curve like the 0.2 shown in Figure 5,

it detects that there is a large number of subverted or non-

operational nodes and that the network is under attack.

In Figure 5, it is easy to distinguish the behavior of

the iTrust network with many operational nodes from its

behavior with few operational nodes. For example, the

curves for x = 0.2 and x = 1.0 are quite different. Although
the probability of exactly 1 match for x = 0.2 is greater than

Figure 5. The probabilities of the exact number of matches for various
proportions of operational nodes.

the corresponding probability for x = 1.0, the probabilities
of exactly k matches, k ≥ 2, for x = 1.0 are greater than

the corresponding probabilities for x = 0.2.
The detection algorithm uses Pearson’s chi-squared

goodness-of-fit test [9] to determine which of the analytical

curves best matches the empirical data for the probability of

a match. The χ2 statistic is given by:

χ2 =

K
∑

k=1

(ok − ek)
2

ek
(4)

where K is the number of buckets into which the observa-

tions fall, ok is the number of observations that fall into the

kth bucket, and ek is the expected (theoretical) number of

observations for the kth bucket obtained from Equation (2).

Using the observations, the detection algorithm evaluates

χ2 for x = 1.0, 0.7, 0.4, 0.2, compares those values of χ2,

and then chooses the smallest of them. The value of x that

corresponds to the smallest value of χ2 is the algorithm’s

best estimate of the proportion x′ of operational nodes.

VI. DEFENDING AGAINST MALICIOUS ATTACKS

The algorithm for defending against malicious attacks

increases the number m of nodes to which the metadata are

distributed and the number r of nodes to which the requests

are distributed. It increases m and r to achieve the same

probability of a match for x < 1.0 as for x = 1.0.
As an example, consider the curves for x = 1.0 and x′ =

0.7 shown in Figure 6 for n = 1000 nodes. For x = 1.0 and
a specific value of m = r, say m = r = 60, the algorithm
first computes the probability of one or more matches to

obtain y0 = P (k ≥ 1). That is, it determines the value

of y0 for the point on the x = 1.0 curve corresponding to

m = r = 60. Thus, for n = 1000, x = 1.0 andm = r = 60,
it calculates y0 = 0.978298 = P (k ≥ 1) from Equation (3).

If the defensive adaptation algorithm determines from

empirical evidence that x′ = 0.7, then from the calculated

value of y0 it determines the value ofm
′ = r′ corresponding

to y0 on the x = 0.7 curve. That is, it iteratively solves the

equation y0 = P ′(k ≥ 1) with n = 1000, x′ = 0.7 and

m′ = r′ in Equation (3). For this example, the defensive

adaptation algorithm finds that m′ = r′ = 72, using the

iterative algorithm shown in Figure 7.



Figure 6. Increase in the distribution of metadata and requests to com-
pensate for non-operational nodes in order to achieve the same probability
of a match.

Initialize n, x′ m′ = m r′ = r, y0
Repeat

m′ = m′ + 1; r′ = r′ + 1

y
′ = 1−

(n−m
′
x
′)

(n)

(n−m
′
x
′
− 1)

(n− 1)
. . .

(n−m
′
x
′
− r

′ + 1)

(n− r′ + 1)

until y′ > y0
return m′, r′

Figure 7. Algorithm for iteratively finding the values of m
′ and r

′ to
maintain the probability of a match if some of the nodes are subverted.

VII. EXPERIMENTAL EVALUATION

To evaluate the ability of the detection algorithm to

estimate the value of x, we performed experiments using

a simulation of iTrust. The simulation allows us to evaluate

the accuracy of the detection algorithm, whereas a real-world

deployment of iTrust would not allow us to do so, because

in the simulation we can control the value of x. We use the

detection algorithm to obtain an estimate x′ of the proportion

of operational nodes and determine the number of times the

estimate is correct by comparing x′ with x.

A. Accuracy

To determine the accuracy of the detection algorithm,

we perform the following experiments for each value of

x = 1.0, 0.7, 0.4, 0.2. We consider a window of w requests.

For each request in the window, the requester sends r request

messages to randomly selected nodes in the iTrust network.

If a node holds metadata that match the metadata in a request

message it receives, it sends a response to the requester. We

cannot use request messages that return k = 0 responses,

because k = 0 responses can arise not only when the

metadata and request messages are distributed to disjoint

subsets of nodes, but also when there is no metadata that

matches the metadata in a request. Consequently, we exclude

the request messages that return k = 0 responses. Moreover,

for 6 ≤ k ≤ r, the probabilities are neglibly small, so we

exclude those request messages too.

For each request in the window, the algorithm determines

the number of responses the requester received for that

request. To determine the observed probability P ′(k) for the
window, 1 ≤ k ≤ r, the algorithm determines the number

N(k) of requests in the window for which it received k

responses and then divides that number by w, i.e.,

P ′(k) =
N(k)

w
(5)

and renormalizes the P ′(k), by dividing by
∑5

k=1
P ′(k).

From the analytical formula (2), the algorithm calculates

P (k) using the values of n, m, r and x and then renormal-

izes the P (k), by dividing by
∑5

k=1
P (k). It then applies

the chi-squared formula (4) to the renormalized P ′(k) and
the renormalized P (k) for k = 1, 2, 3, 4, 5 and chooses the

particular value of x′ (x′ = 1.0, 0.7, 0.4, 0.2) for which the

chi-squared value is the smallest.

In our experiments, we consider windows of sizes w =
10, 20, . . . , 100. For each value of w, we repeat the exper-

iment S = 10, 000 times, and determine the number C out

of S times for which the algorithm’s estimate x′ is correct.

The accuracy A(w) is given by:

A(w) =
C

S
(6)

Figure 8 shows the accuracy A(w) as a function of the

window size w = 10, 20, . . . , 100 for x = 1.0, 0.7, 0.4, 0.2
operational nodes in an iTrust network with n = 1000
nodes and m = r = 60. The figure shows that, for the

larger window sizes, the accuracy for x = 0.2 is somewhat

worse than that for the other values of x, which we are still

investigating.

B. Response Time

Using the accuracy results obtained in the previous ex-

periments, we then determine the mean response time of

the detection algorithm. The mean response time R(w),
represented as the number w of requests in a window is

given by:

R(w) =

T
∑

i=1

iwA(w)(1 −A(w))i−1 (7)

In Equation (7), the probability that the value of x is

estimated correctly after the first window is A(w), con-
tributing 1wA(w) requests to the summation. The prob-

ability that the value of x is estimated incorrectly after

the first window, and correctly after the second window is

A(w)(1−A(w)), contributing 2wA(w)(1−A(w)) requests
to the summation, etc. Here, T is some large integer such

that TwA(w)(1−A(w))T−1 makes a negligible contribution

to the sum.



Figure 8. The accuracy of the detection algorithm for various window
sizes and various proportions of operational nodes.

Simplifying Equation (7), we obtain:

R(w) = wA(w)
T∑

i=1

i(1− A(w))i−1

= wA(w)
1− (T + 1)(1−A(w))T + T (1− A(w))T+1

A(w)2

= w
1− (1 + TA(w))(1−A(w))T

A(w)

≈

w

A(w)
(8)

Figure 9 shows the mean response time R(w) as a

function of the window size w = 10, 20, . . . , 100 for

x = 1.0, 0.7, 0.4, 0.2 operational nodes in an iTrust network
with n = 1000 nodes and m = r = 60. As the figure shows,
the mean response time increases linearly with the window

size w for each value of x. Moreover, the figure shows that,

for different values of x and the same value of w, the mean

response times are very close.

Comparing Figures 8 and 9 for specific values of w, we

see that there is a tradeoff between the accuracy and the

response time. A small value of w results in a low response

time but also low accuracy. A large value of w increases the

accuracy but also increases the response time. A compromise

value of w, say w = 40, might be appropriate.
The response time, in seconds, depends not only on the

number of requests in the window but also on the time

interval between requests, i.e., the time between issuing a

request and obtaining the responses for that request plus

the think time. If it takes s seconds between each request

in the window, then the response time between requests

is sR(w) seconds. More frequent requests yield a lower

response time. However, with a large number of participating

nodes, frequent requests might overload the iTrust network.

VIII. RELATED WORK

Peer-to-peer networks have been characterized as struc-

tured or unstructured [14]. The structured approach requires

Figure 9. The mean response time of the detection algorithm for various
window sizes and various proportions of operational nodes.

the nodes to be organized in an overlay network, based on

a distributed hash table, tree, ring, etc. The unstructured

approach uses randomization and/or gossiping to distribute

the metadata (or data) and the requests to nodes in the

network. The iTrust system uses the unstructured approach.

Gnutella [8], one of the first unstructured peer-to-peer

networks, uses flooding of requests. A node makes a copy of

a file when it receives the file it requested. If the query rate

is high, nodes quickly become overloaded and the system

ceases to function satisfactorily.

To address this problem, Ferreira et al. [7] use random

walks, instead of flooding, to replicate objects and propagate

queries. Gia [1] employs biased random walks to direct

queries towards high-capacity nodes. iTrust does not use

flooding or random walks, but rather distributes the metadata

and the requests to nodes chosen uniformly at random.

Freenet [3] replicates an object at a node, even though the

node did not request it. Nodes that successfully respond to

requests receive more metadata and more requests, making it

easy for a group of untrustworthy nodes to gather most of the

searches into their group. The Adaptive Probabilistic Search

(APS) method [18] likewise uses feedback from previous

searches to direct future searches, instead of distributing the

requests uniformly at random, like iTrust does.

Cohen and Shenker [4] show that square root replication

is theoretically optimal for minimizing the search traffic.

They replicate objects based on the access frequencies

(popularities) of the objects. Lv et al. [12] also use square

root replication, and adaptively adjust the replication degree

based on the query rate. iTrust likewise exploits square root

replication but distributes the metadata uniformly at random,

so that popular nodes are not more vulnerable to attack.

BubbleStorm [17] replicates both queries and data, hy-

bridizes random walks and flooding, and considers churn,

leaves and crashes. Leng et al. [11] present mechanisms

for maintaining the desired degree of replication in Bub-



bleStorm, when each object has a maintainer node. In iTrust,

we use different techniques to maintain the desired degree

of replication of the metadata and the requests.

Morselli et al. [15] describe an adaptive replication pro-

tocol with a feedback mechanism that adjusts the number of

replicas according to the mean search length to determine if

an object is replicated sufficiently. Their adaptive replication

protocol is quite different from our defensive adaptation

algorithm for iTrust.

Sarshar et al. [16] use random walks and bond percolation

in power law networks with high-degree nodes. The high-

degree nodes in such networks are subject to overloading

and are vulnerable to targeted malicious attacks. They note:

“protocols for identifying or compensating for such attacks,

or even recovering after such an attack has disrupted the

network are yet to be designed.” We present such protocols

in this paper.

Jesi et al. [10] identify malicious nodes in a random

overlay network based on gossiping and put them on a

blacklist. They focus on hub attacks in which colluding

malicious nodes partition the network by spreading false

rumors. iTrust does not use gossiping but, rather, uses

random distribution of the metadata and the requests and,

thus, is less subject to hub attacks.

Condie et al. [5] present a protocol for finding adaptive

peer-to-peer topologies that protect against malicious peers

that upload corrupt, inauthentic or misnamed content. Peers

improve the trustworthiness of the network by forming

connections, based on local trust scores defined by past

interactions. Effectively, their protocol disconnects malicious

peers and moves them to the edge of the network.

IX. CONCLUSIONS AND FUTURE WORK

We have presented novel statistical algorithms for detect-

ing and defending against malicious attacks in the iTrust

information retrieval network. The detection algorithm de-

termines empirically the probabilities of the exact numbers

of matches based on the number of responses that a re-

questing node receives. Then, it compares the empirical

probabilities with the analytical probabilities for the exact

numbers of matches, to estimate the proportion of nodes that

are subverted or non-operational. The defensive adaptation

algorithm determines the increased number of nodes to

which the metadata and the requests must be distributed

to maintain the same probability of a match when some

proportion of the nodes are subverted or non-operational, as

when all of the nodes are operational. In future work, we

will investigate other kinds of malicious attacks on iTrust,

and detection and defensive adaptation algorithms for those

kinds of malicious attacks.
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