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Abstract—The iTrust system is a completely distributed and  spreading the responsibility of message distribution more
decentralized information publication, search and retrieval widely across the nodes. In [18], we presented an algorithm
system, that is designed to defend against censorship of 4 cajculates the probability density function (pdf) fhe
information in the Internet. In this paper, we investigate the . .
iTrust system with message forwarding, which spreads the number of nodes reached when forwarding messages in an
responsibility of message distribution more widely acrosghe  arbitrary network. The iTrust system does not need to flood
nodes in the network. We present an analysis of the match the metadata and request messages to all of the nodes in
probabilities of the iTrust system with message forwarding  the network to achieve a high match probability; rather, it
in terms of the forwarding fgnout, the.rllumber of levels of  haads to distribute those messages to @§i nodes. In
forwarding, and the forwarding probability. We show that, thi . tioate th tch babilit d al
with a forwarding probability of 1.0, relatively small valu es of is paper, we investigate the match probability (an f"‘so
the forwarding fanout and the number of levels of forwarding ~ the number of nodes reached and the message cost) in the

suffice to achieve a high match probability and a reasonable iTrust network with message forwarding, as a function of

message cost. the forwarding fanout, the number of levels of forwarding,
Keywords-distributed and decentralized information pub- and the forwarding probability.

lication, search and retrieval; message forwarding; match The rest of the paper is organized as follows. Section Il

probability; iTrust presents an overview of the design of iTrust. Section IlI

presents the match probabilities for iTrust without messag
forwarding. Section IV discusses the probability density
The free flow of information is one of the cornerstonesfunctions for the number of nodes reached and the corre-
of a free society. Modern societies have come to depend ogponding number of messages required. Section V presents
the Internet for distribution of, and access to, informatio an algorithm that combines the match probabilities for §tru
Unfortunately, centralized mechanisms, such as search emith the probability density functions for the number of
gines, are very vulnerable to censorship of informatiorerfEv nodes reached to obtain the match probabilities for iTrust
in societies in which censorship is not currently practiced with message forwarding, along with results obtained from
there is no guarantee of the free flow of information in thethat algorithm. Section VI discusses related work, and Sec-

I. INTRODUCTION

future, as evidenced by history and recent events. tion VII presents conclusions and future work.
The iTrust system is a completely distributed and decen-
tralized information publication, search and retrievateyn, Il. DESIGN OF TRUST

that is designed to defend against censorship of informatio

in the Internet. In the iTrust network, the nodes distribute The iTrust system is a completely distributed system
metadata and requests (queries) for information to subsetbat involves no centralized mechanisms and no centralized
of the participating nodes chosen at random. The nodesontrol. We refer to the nodes that participate in an iTrust
that receive the requests try to match the keywords in th@etwork as theparticipating nodes or the membership.
requests with the metadata they hold. If a node has a matcMultiple iTrust networks may exist at any point in time,

it then responds to the requesting node with the URL of theand a node may participate in multiple iTrust networks at
corresponding document and the requesting node then ust#ie same point in time.

that URL to retrieve the document. In iTrust some nodes, theource nodes, produce in-

In [17], we showed that, if the metadata and request medormation, and make that information available to other
sages are distributed t/n nodes, where: is the number  participating nodes. The source nodes produce metadata tha
of nodes in the iTrust network, then the match probability isdescribes their information, and distribute that metatiata
high (0.9817). Instead of the source node’s distributing its subset of the participating nodes chosen at random, as shown
metadata and the requesting node’s distributing its reéque#n Figure 1. The metadata are distinct from the information
directly to 2/n nodes, other nodes might forward the meta-they describe, and include a list of keywords and the URL
data and request messages they receive to further nodss, thaf the source of the information.
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Figure 1. A source node distributes metadata, describéngfiormation,
to randomly chosen nodes in the network.
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Figure 2. A requesting node distributes its request to rarigahosen
nodes in the network. One of the nodes has both the metaddtéhan
request and, thus, an encounter occurs.
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Figure 3. A node matches the metadata and the request andsrepo
the match to the requester, which then retrieves the infoomdérom the
source node.

Other nodes, theequesting nodes, request and retrieve

information. Such nodes generate requests (queries) that

contain keywords for the desired information, and distiebu

I1l. M ATCH PROBABILITIES OF
ITRUST WITHOUT MESSAGEFORWARDING

First, we provide the match probabilities for iTrugthout
message forwarding. We assume that all of the participating
nodes in an iTrust network have the same membership set
and that any node can conneitectly to any other node. The
primary parameters that determine the match probabibifies
iTrust without message forwarding are:

« n: Number of participating nodes.€., the size of the
membership set)l < n

« m: Number of participating nodes to which the meta-
data are distributed, < m < n

« 7: Number of participating nodes to which the requests
are distributed] <r <n

o xz: Proportion of then participating nodes that are
operational,i.e., respond to requests when they have
a match,0 < z < 1.0.

Note that, ifz < 1.0, a node is not reporting a match when
it has a match, either because it has crashed or because it is
malicious. In [3], we presented algorithms for detectind an
defending against malicious nodes in the iTrust network.
Our probabilistic analysis of iTrust is based on the hy-
pergeometric distribution [8], which describes the number
of successes in a sequence of random draws from a finite
population without replacement. Thus, the probability of
exactly k matches is given by:

P(k) = "
()
(% mxz—1 mxz—k+1 )(nfmz nfmzfrJrkJrl)
_ k k-1 1 r—k " 1
- nn—1 n—r4+1
rr—1"- 1

for ma +r <n andk < min{maz,r}.

Consequently, the probability df = 0 matches is given

by:
n—mx n—mr—1 n—mx—r—+1

—1 1
P(O) = - :1—1 n—r+1
11

33

Thus, the probability obne or more matches & match)
is given by:

T r—1 1
P(k > 1) =1- nn—1 n—r+1 (1)
rr—1" 1

their requests to a subset of the participating nodes chosen

at random, as shown in Figure 2. for ma + 7 < n.
The participating nodes compare the metadata in the o o jTrust network without message forwarding, with

requests they receive with the metadata they hold. If a nodg 1000 nodes andz = 1.0, 0.8, 0.6 operational

finds a match, which we call aencounter, the matching  ho4es  Figure 4 shows the match probabilities, obtained

node returns the URL of the information to the requesting,,, Equation (1), as the number of nodes to which the

node. The requesting node then uses the URL to retrieve theetadata and the requests are distributed increases. Note
information from the source node, as shown in Figure 3. 4t if ) — 1000 andz — 1.0. distribution of the metadata
In iTrust, a match can be an exact match or a partia'and'the requests \/n ~ ’

. . ~ 62 nodes results in a high match
match, or it can involve synonyms. probability (0.9817).



Figure 5. Three examples of nodes at leviets 0, 1,2 with ¢ = 4 and f = 1.0.

message te randomly chosen nodesi;i, nso, ..., n;.} at
level 2, other than itself, with forwarding probabilif; and
so on. Note thak,; might beng or n;, 1 < i’ <e¢, ¢/ #1,
and thatn,;; might ben; j,, 1 <i <¢, 1 <j <e¢, i’ #1i.
We refer to such nodes awiplicate nodes.

Figure 5 shows three examples of nodes at levels
0,1,2 with ¢ = 4. In the middle exampleps = n14 is a
duplicate node. In the example on the right, = n14 is a
duplicate node anaé, = ni3 is a duplicate node.

In [18], we presented a general algorithm for an arbitrary
network that determines the probability density function
pdf[i], 1 < i < n, for the number of nodes reached witHin

. : : : : : : : levels of message forwarding for specific values:of and
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Figure 4. Match probabilities for iTrust without messageafarding, as ~Nodes reached, within a specific number of levels of message
the number of nodes to which the metadata and the requestiisaibuted forwarding, exhibits a wide range, particularly for smalle
increases, for various proportionsof operational nodes whem = 1000. values ofc and smaller values of.

Figure 6 shows the probability density functions for the
number of nodes reached up through ldyéor various val-
ues ofc, [ andf in a network withn = 1000 nodes. It can be
seen that, withf = 1.0, appropriate choices of the parame-

Next, we discuss the probability density functions for theters. andi can be made to distribute the messages to desired
number of nodes reached for iTrusith message forward- ympers of nodes, and that the variability in the number of
ing. We assume that any node can connect to any other nodggdes reached is reasonable. However, when1.0, there
and consider the following parameters of the forwarding;s sypstantial variability in the number of nodes reached.
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IV. PROBABILITY DENSITY FUNCTIONS FOR
ITRUST WITH MESSAGEFORWARDING

algorithm: The algorithm, presented in [18], for calculating the prob-
« n: Number of nodes in the network,< n ability density function for the number of nodes reached is
o c: Forwarding fanout] <c <n easily extended to calculate the probability density fiomct
« I: Level of message forwarding, </ for the number of messages required to reach specific
o f: Probability of message forwarding,< f < 1.0. numbers of nodes.

Note that, ifc = 1, then the message follows a random walk Figure 7 shows the probability density functions for the
and, ifc=n — 1 andl = 1, then the message is broadcast.number of messages requirég( message cost) up through
Also note that a node forwards a message twdes with  levell, for various values of, [ and f in a network withn =
probability f and does not forward the message at all to anyl000 nodes. It can be seen that, with= 1.0, the messages
other node with probability — f. cost is quite well defined. However, with= 0.8 and f =

We investigate settings of the parameteyd and f in 0.6, there is substantial variability in the message cost.
order to control the number of nodes reached, the number Note that, forf = 1.0, there is less variability in the
of messages sent, and the match probability. Other papensumber of messages required than in the number of nodes
such as [19], have investigated settingsfofo control the reached. The reason is that the larger number of nodes at
number of nodes reached. levell to which the message is sent makes it more likely that

A nodeny sends a message taandomly chosen nodes a duplicate node will be encountered, whereas the number
{n1,n9,...,n.} atlevel 1, other than itself, with forwarding of messages sent at leve} 1 and prior levels is not affected
probability f. Each noden;, 1 < i < ¢, forwardsng’s by the duplicate nodes at levél
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Figure 6. Probability density functions for the number ofles reached Figure 7.  Probability density functions for the number of sseges
up through level for various values of, I and f whenn = 1000. required up through levélfor various values o,  and f whenn = 1000.

In Figure _6 and Figure 7, i_t can be seen that,fee 1000 findMatchProbabilityg, ¢, I, f, )
nodes, setting the forwarding fanout= 2, the level of
forwardingl! = 5, and the forwarding probability = 1.0 re- 1 matchProb = 0.0
sults in the distribution of the metadata and request messag 2 form =c+11ton do
to approximately 60 nodes with corresponding message costf3 forr=c+1tondo
to achieve a high match probability, as shown in Figure 9, 4 matchProb = matchProb +
With ¢ = 4, 1 = 3 and f = 1.0, the forwarding algorithm P(k 2 1) x pdfm] x pdf[r]
delivers the messages to more nodes with higher messag§ return matchProb
cost, which might be acceptable. However, witk 3,1 = 3 Figure 8. The method for finding the match probability in tfeust
and f = 1.0, the forwarding algorithm delivers messages to"eork With message forwarding.
too few nodes whereas, with= 3, =4 and f = 1.0, the
forwarding algorithm delivers messages to too many nodes;e., whenz = 1.0. It can be seen that, when the forwarding
with a much higher message cost. fanout ¢ = 2, at least! = 5 levels of forwarding are

Figure 6 and Figure 7 also show the probability densityneeded to achieve a high match probability. Moreover, if the
functions for several values efand! with f < 1.0. It can  forwarding fanoutc = 3, then! = 4 levels of forwarding
be seen that, fof < 1.0, fewer nodes are reached and fewerare required and, i¢ = 4, thenl = 3 levels of forwarding
messages are required, but the probability density funstio suffice. Furthermore, ifc = 3, then! = 3 levels of
exhibit much more variability than wheri = 1.0. This forwarding result in a match probability that is not great
variability results in reduced match probabilities, asveho but that might suffice in some circumstances.
in Figure 10. The reason is that sometimes the metadata or The match probabilities, shown in Figure 9, are traded off
request messages reach too few nodes, which is not offsggainst the number of messages required (message cost),
by the other times when the metadata or request messagg@own in Figure 7. For example, with= 3, [ = 4 and

reach more nodes. x = 1.0, the match probability is high but the message cost
is also high whereas, with = 3, 1 = 3 andz = 1.0, the

V. MATCH PROBABILITIES FOR message cost is lower but the match probability is also lower

ITRUST WITH MESSAGEFORWARDING Figure 9 also shows the match probabilities when some

The method for finding the match probability (one or of the nodes are not operational & 0.8 andx = 0.6).
more matches) for iTrust with message forwarding is giverwith ¢ = 3 andl = 4 or with ¢ = 4 and! = 3, the iTrust
in Figure 8. It uses the probability of a matédk > 1) network with forwarding provides a high degree of resilienc
given by Equation (1) and the probability density functionsto crashed or malicious nodes, but that resilience comes at
pdf[m] and pdf|r] given by the algorithm in [18] for the the cost of more messages, as shown in Figure 7. ¥\4tt8
number of nodes reached when forwarding the metadata tand/ = 3 and withc = 2 andi = 5 (which are economical in
m nodes and the request messages tmdes. the use of messages), there are substantial reductions in th
Figure 9 shows the match probabilities for various valuesmatch probabilities in the presence of crashed or malicious
of ¢, I and z in ann = 1000 node iTrust network with nodes. That reduction in the match probabilities can be
message forwarding whefi= 1.0. The solid lines represent prevented by increasing the number of levels of forwarding
the match probabilities when all of the nodes are operattionawhen non-operational nodes are detected.
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Figure 9. Match probabilities for iTrust with message folimg, for ~ Figure 10. Match probabilities for iTrust with message farding, for
various values of, z andl whenn = 1000 and f = 1.0. various values ot, f and! whenn = 1000 andz = 1.0.

An alternative strategy, in the presence of non-operationagossip algorithms. Farley [6] presents algorithms that-con
nodes, is to increase the forwarding faneusuch a strategy struct broadcast networks with approximately the minimum
might be appropriate in moving from = 3 and! = 3 number of links. He also determines upper and lower bounds
toc =4andl = 3. With ¢ = 2 and! = 5, a simple to broadcasin messages throughout a networkrohodes
increase in the forwarding fanout is excessive. It might bg7], but he does not consider probability density functions

more appropriate to move from= 2 andl =5t c =3 Deering and Cheriton [5] provide a survey of multicast
and! = 4, increasing the forwarding fanout and reducingrouting, using spanning trees along which messages are for-
the number of levels of forwarding. warded in internetworks and extended local-area networks.

Some forwarding systems [19] use the forwarding prob-_in et al. [15] exploit directional information for gossiping
ability parameterf to reduce the number of nodes reached.in wide-area networks. Caste al. [1] describe a scalable,
Figure 6 shows the effect of varying the forwarding prob-decentralized multicast infrastructure based on gosgipin
ability f on the number of nodes reached. In comparisorwhich is extended to a hierarchical infrastructure in [12].
with the ¢ and ! parameters which are more deterministic  Gnutella [11], one of the first unstructured information
in their effect on the number of nodes reached, the sharing networks, uses flooding of requests to find informa-
parameter introduces more variability into the number oftion. A node makes a copy of a file when it receives the file
nodes reached. it requested. If the query rate is high, nodes quickly become

The variability in the number of nodes reached with overloaded and the system ceases to function satisfactoril
a forwarding probability f < 1.0, shown in Figure 6, Freenet [4] is more efficient than Gnutella, because it arn
has, in iTrust, a significant detrimental effect on the mathfrom previous requests_ In Freenet, nodes that SUCCQSSfU”
probability, shown in Figure 10. The match probability is respond to requests receive more metadata and more re-
traded off against the number of messages required (messaggests, making it easy for a group of untrustworthy nodes
cost), shown in Figure 7. For example, with= 3,/ =4 to gather most of the searches into their group.
and f = 0.6, the mean message cost is about the same as Qther peer-to-peer systems use random walks to improve
with ¢ = 3, 1 = 3 and f = 1.0, but the variability in the o the flooding of Gnutella. Random walks correspond to
message cost is greater, and the match probability is lower, . — 1 with larger values of, in our notation. For example,
the former case than in the latter case. However, sometimgSerreiraet al. [9] use random walks to replicate the metadata
setting f < 1.0 might be useful. For example, with= 3,  and the requests to the square root of the number of nodes
l =4 andf = 0.8, the match probability is still high but in the network. Lvet al. [16] use random walks and start
the message cost is much less than with 3, I = 4 and  yjith uniform random replication of data, but then adapgjvel
f = 1.0. Nonetheless, this case must be compared withgjyst the replication degree based on the query rate, and
¢=2,1l=>5andf = 1.0, which has an equally high match ,se square root replication to improve performance. Zhong
probability and a lower message cost with less variability. ang Shen [22] use random walks for requests, where the
number of nodes visited by a request is proportional to the
square root of the request popularity. Gia [2] employs lnase

Message forwarding has been used as an alternative t@ndom walks to direct queries towards high-capacity nodes
multicasting by a single source node, and in gossipingn contrast, iTrust distributes the metadata and the rdégues
protocols. Hedetniemét al. [13] present a survey of the to nodes that are chosen uniformly at random.
theory of gossiping and broadcasting in communication BubbleStorm [21] replicates both queries and data, and
networks. Shah [20] provides a comprehensive discussion afombines random walks and flooding to perform exhaustive

V1. RELATED WORK
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a forwarding probabilityf = 1.0 result in the metadata [12] | Gupta, A. M. Kermarrec and A. J. Ganesh, “Efficient

. S . Gupta, A. M. . J ) ICI
and requ?St messages be'”_g distributed . nodes and, and adaptive epidemic-style protocols for reliable andadda
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