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Abstract—The iTrust system is a completely distributed and
decentralized information publication, search and retrieval
system, that is designed to defend against censorship of
information in the Internet. In this paper, we investigate the
iTrust system with message forwarding, which spreads the
responsibility of message distribution more widely acrossthe
nodes in the network. We present an analysis of the match
probabilities of the iTrust system with message forwarding,
in terms of the forwarding fanout, the number of levels of
forwarding, and the forwarding probability. We show that,
with a forwarding probability of 1.0, relatively small valu es of
the forwarding fanout and the number of levels of forwarding
suffice to achieve a high match probability and a reasonable
message cost.
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I. I NTRODUCTION

The free flow of information is one of the cornerstones
of a free society. Modern societies have come to depend on
the Internet for distribution of, and access to, information.
Unfortunately, centralized mechanisms, such as search en-
gines, are very vulnerable to censorship of information. Even
in societies in which censorship is not currently practiced,
there is no guarantee of the free flow of information in the
future, as evidenced by history and recent events.

The iTrust system is a completely distributed and decen-
tralized information publication, search and retrieval system,
that is designed to defend against censorship of information
in the Internet. In the iTrust network, the nodes distribute
metadata and requests (queries) for information to subsets
of the participating nodes chosen at random. The nodes
that receive the requests try to match the keywords in the
requests with the metadata they hold. If a node has a match,
it then responds to the requesting node with the URL of the
corresponding document and the requesting node then uses
that URL to retrieve the document.

In [17], we showed that, if the metadata and request mes-
sages are distributed to2

√
n nodes, wheren is the number

of nodes in the iTrust network, then the match probability is
high (0.9817). Instead of the source node’s distributing its
metadata and the requesting node’s distributing its request
directly to 2

√
n nodes, other nodes might forward the meta-

data and request messages they receive to further nodes, thus

spreading the responsibility of message distribution more
widely across the nodes. In [18], we presented an algorithm
that calculates the probability density function (pdf) forthe
number of nodes reached when forwarding messages in an
arbitrary network. The iTrust system does not need to flood
the metadata and request messages to all of the nodes in
the network to achieve a high match probability; rather, it
needs to distribute those messages to only2

√
n nodes. In

this paper, we investigate the match probability (and also
the number of nodes reached and the message cost) in the
iTrust network with message forwarding, as a function of
the forwarding fanout, the number of levels of forwarding,
and the forwarding probability.

The rest of the paper is organized as follows. Section II
presents an overview of the design of iTrust. Section III
presents the match probabilities for iTrust without message
forwarding. Section IV discusses the probability density
functions for the number of nodes reached and the corre-
sponding number of messages required. Section V presents
an algorithm that combines the match probabilities for iTrust
with the probability density functions for the number of
nodes reached to obtain the match probabilities for iTrust
with message forwarding, along with results obtained from
that algorithm. Section VI discusses related work, and Sec-
tion VII presents conclusions and future work.

II. D ESIGN OF ITRUST

The iTrust system is a completely distributed system
that involves no centralized mechanisms and no centralized
control. We refer to the nodes that participate in an iTrust
network as theparticipating nodes or the membership.
Multiple iTrust networks may exist at any point in time,
and a node may participate in multiple iTrust networks at
the same point in time.

In iTrust some nodes, thesource nodes, produce in-
formation, and make that information available to other
participating nodes. The source nodes produce metadata that
describes their information, and distribute that metadatato a
subset of the participating nodes chosen at random, as shown
in Figure 1. The metadata are distinct from the information
they describe, and include a list of keywords and the URL
of the source of the information.



Figure 1. A source node distributes metadata, describing its information,
to randomly chosen nodes in the network.

Figure 2. A requesting node distributes its request to randomly chosen
nodes in the network. One of the nodes has both the metadata and the
request and, thus, an encounter occurs.

Figure 3. A node matches the metadata and the request and reports
the match to the requester, which then retrieves the information from the
source node.

Other nodes, therequesting nodes, request and retrieve
information. Such nodes generate requests (queries) that
contain keywords for the desired information, and distribute
their requests to a subset of the participating nodes chosen
at random, as shown in Figure 2.

The participating nodes compare the metadata in the
requests they receive with the metadata they hold. If a node
finds a match, which we call anencounter, the matching
node returns the URL of the information to the requesting
node. The requesting node then uses the URL to retrieve the
information from the source node, as shown in Figure 3.

In iTrust, a match can be an exact match or a partial
match, or it can involve synonyms.

III. M ATCH PROBABILITIES OF

ITRUST WITHOUT MESSAGEFORWARDING

First, we provide the match probabilities for iTrustwithout
message forwarding. We assume that all of the participating
nodes in an iTrust network have the same membership set
and that any node can connectdirectly to any other node. The
primary parameters that determine the match probabilitiesof
iTrust without message forwarding are:

• n: Number of participating nodes (i.e., the size of the
membership set),1 < n

• m: Number of participating nodes to which the meta-
data are distributed,1 ≤ m ≤ n

• r: Number of participating nodes to which the requests
are distributed,1 ≤ r ≤ n

• x: Proportion of then participating nodes that are
operational,i.e., respond to requests when they have
a match,0 < x ≤ 1.0.

Note that, ifx < 1.0, a node is not reporting a match when
it has a match, either because it has crashed or because it is
malicious. In [3], we presented algorithms for detecting and
defending against malicious nodes in the iTrust network.

Our probabilistic analysis of iTrust is based on the hy-
pergeometric distribution [8], which describes the number
of successes in a sequence of random draws from a finite
population without replacement. Thus, the probability of
exactly k matches is given by:
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for mx+ r ≤ n andk ≤ min{mx, r}.
Consequently, the probability ofk = 0 matches is given

by:
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Thus, the probability ofone or more matches (a match)
is given by:

P (k ≥ 1) = 1−
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for mx+ r ≤ n.
For an iTrust network without message forwarding, with

n = 1000 nodes andx = 1.0, 0.8, 0.6 operational
nodes, Figure 4 shows the match probabilities, obtained
from Equation (1), as the number of nodes to which the
metadata and the requests are distributed increases. Note
that, if n = 1000 andx = 1.0, distribution of the metadata
and the requests to2

√
n ≈ 62 nodes results in a high match

probability (0.9817).



Figure 5. Three examples of nodes at levelsl = 0, 1, 2 with c = 4 andf = 1.0.

Figure 4. Match probabilities for iTrust without message forwarding, as
the number of nodes to which the metadata and the requests aredistributed
increases, for various proportionsx of operational nodes whenn = 1000.

IV. PROBABILITY DENSITY FUNCTIONS FOR

ITRUST WITH MESSAGEFORWARDING

Next, we discuss the probability density functions for the
number of nodes reached for iTrustwith message forward-
ing. We assume that any node can connect to any other node,
and consider the following parameters of the forwarding
algorithm:

• n: Number of nodes in the network,1 < n

• c: Forwarding fanout,1 ≤ c < n

• l: Level of message forwarding,0 ≤ l

• f : Probability of message forwarding,0 < f ≤ 1.0.

Note that, ifc = 1, then the message follows a random walk
and, if c = n− 1 and l = 1, then the message is broadcast.
Also note that a node forwards a message toc nodes with
probabilityf and does not forward the message at all to any
other node with probability1− f .

We investigate settings of the parametersc, l and f in
order to control the number of nodes reached, the number
of messages sent, and the match probability. Other papers,
such as [19], have investigated settings off to control the
number of nodes reached.

A noden0 sends a message toc randomly chosen nodes
{n1, n2, . . . , nc} at level 1, other than itself, with forwarding
probability f . Each nodeni, 1 ≤ i ≤ c, forwardsn0’s

message toc randomly chosen nodes{ni1, ni2, . . . , nic} at
level 2, other than itself, with forwarding probabilityf , and
so on. Note thatnij might ben0 or ni′ , 1 ≤ i′ ≤ c, i′ 6= i,
and thatnij might beni′j′ , 1 ≤ i′ ≤ c, 1 ≤ j′ ≤ c, i′ 6= i.
We refer to such nodes asduplicate nodes.

Figure 5 shows three examples of nodes at levelsl =
0, 1, 2 with c = 4. In the middle example,n3 = n14 is a
duplicate node. In the example on the right,n3 = n14 is a
duplicate node andn4 = n13 is a duplicate node.

In [18], we presented a general algorithm for an arbitrary
network that determines the probability density function
pdf [i], 1 ≤ i ≤ n, for the number of nodes reached withinl
levels of message forwarding for specific values ofc, l and
f . In calculating the pdf, the algorithm eliminates duplicate
nodes. Using that algorithm, we found that the number of
nodes reached, within a specific number of levels of message
forwarding, exhibits a wide range, particularly for smaller
values ofc and smaller values off .

Figure 6 shows the probability density functions for the
number of nodes reached up through levell, for various val-
ues ofc, l andf in a network withn = 1000 nodes. It can be
seen that, withf = 1.0, appropriate choices of the parame-
tersc andl can be made to distribute the messages to desired
numbers of nodes, and that the variability in the number of
nodes reached is reasonable. However, whenf < 1.0, there
is substantial variability in the number of nodes reached.

The algorithm, presented in [18], for calculating the prob-
ability density function for the number of nodes reached is
easily extended to calculate the probability density function
for the number of messages required to reach specific
numbers of nodes.

Figure 7 shows the probability density functions for the
number of messages required (i.e., message cost) up through
level l, for various values ofc, l andf in a network withn =
1000 nodes. It can be seen that, withf = 1.0, the messages
cost is quite well defined. However, withf = 0.8 andf =
0.6, there is substantial variability in the message cost.

Note that, forf = 1.0, there is less variability in the
number of messages required than in the number of nodes
reached. The reason is that the larger number of nodes at
level l to which the message is sent makes it more likely that
a duplicate node will be encountered, whereas the number
of messages sent at levell−1 and prior levels is not affected
by the duplicate nodes at levell.



Figure 6. Probability density functions for the number of nodes reached
up through levell for various values ofc, l andf whenn = 1000.

In Figure 6 and Figure 7, it can be seen that, forn = 1000
nodes, setting the forwarding fanoutc = 2, the level of
forwardingl = 5, and the forwarding probabilityf = 1.0 re-
sults in the distribution of the metadata and request messages
to approximately 60 nodes with corresponding message cost,
to achieve a high match probability, as shown in Figure 9.
With c = 4, l = 3 and f = 1.0, the forwarding algorithm
delivers the messages to more nodes with higher message
cost, which might be acceptable. However, withc = 3, l = 3
andf = 1.0, the forwarding algorithm delivers messages to
too few nodes whereas, withc = 3, l = 4 andf = 1.0, the
forwarding algorithm delivers messages to too many nodes,
with a much higher message cost.

Figure 6 and Figure 7 also show the probability density
functions for several values ofc and l with f < 1.0. It can
be seen that, forf < 1.0, fewer nodes are reached and fewer
messages are required, but the probability density functions
exhibit much more variability than whenf = 1.0. This
variability results in reduced match probabilities, as shown
in Figure 10. The reason is that sometimes the metadata or
request messages reach too few nodes, which is not offset
by the other times when the metadata or request messages
reach more nodes.

V. M ATCH PROBABILITIES FOR

ITRUST WITH MESSAGEFORWARDING

The method for finding the match probability (one or
more matches) for iTrust with message forwarding is given
in Figure 8. It uses the probability of a matchP (k ≥ 1)
given by Equation (1) and the probability density functions
pdf [m] and pdf [r] given by the algorithm in [18] for the
number of nodes reached when forwarding the metadata to
m nodes and the request messages tor nodes.

Figure 9 shows the match probabilities for various values
of c, l and x in an n = 1000 node iTrust network with
message forwarding whenf = 1.0. The solid lines represent
the match probabilities when all of the nodes are operational,

Figure 7. Probability density functions for the number of messages
required up through levell for various values ofc, l andf whenn = 1000.

findMatchProbability(n, c, l, f , x)

1 matchProb = 0.0
2 for m = c+ 1 to n do
3 for r = c+ 1 to n do
4 matchProb = matchProb +

P (k ≥ 1)× pdf [m]× pdf [r]
5 return matchProb

Figure 8. The method for finding the match probability in the iTrust
network with message forwarding.

i.e., whenx = 1.0. It can be seen that, when the forwarding
fanout c = 2, at least l = 5 levels of forwarding are
needed to achieve a high match probability. Moreover, if the
forwarding fanoutc = 3, then l = 4 levels of forwarding
are required and, ifc = 4, then l = 3 levels of forwarding
suffice. Furthermore, ifc = 3, then l = 3 levels of
forwarding result in a match probability that is not great
but that might suffice in some circumstances.

The match probabilities, shown in Figure 9, are traded off
against the number of messages required (message cost),
shown in Figure 7. For example, withc = 3, l = 4 and
x = 1.0, the match probability is high but the message cost
is also high whereas, withc = 3, l = 3 and x = 1.0, the
message cost is lower but the match probability is also lower.

Figure 9 also shows the match probabilities when some
of the nodes are not operational (x = 0.8 and x = 0.6).
With c = 3 and l = 4 or with c = 4 and l = 3, the iTrust
network with forwarding provides a high degree of resilience
to crashed or malicious nodes, but that resilience comes at
the cost of more messages, as shown in Figure 7. Withc = 3
andl = 3 and withc = 2 andl = 5 (which are economical in
the use of messages), there are substantial reductions in the
match probabilities in the presence of crashed or malicious
nodes. That reduction in the match probabilities can be
prevented by increasing the number of levels of forwarding
when non-operational nodes are detected.



Figure 9. Match probabilities for iTrust with message forwarding, for
various values ofc, x and l whenn = 1000 andf = 1.0.

An alternative strategy, in the presence of non-operational
nodes, is to increase the forwarding fanoutc. Such a strategy
might be appropriate in moving fromc = 3 and l = 3
to c = 4 and l = 3. With c = 2 and l = 5, a simple
increase in the forwarding fanout is excessive. It might be
more appropriate to move fromc = 2 and l = 5 to c = 3
and l = 4, increasing the forwarding fanout and reducing
the number of levels of forwarding.

Some forwarding systems [19] use the forwarding prob-
ability parameterf to reduce the number of nodes reached.
Figure 6 shows the effect of varying the forwarding prob-
ability f on the number of nodes reached. In comparison
with the c and l parameters which are more deterministic
in their effect on the number of nodes reached, thef

parameter introduces more variability into the number of
nodes reached.

The variability in the number of nodes reached with
a forwarding probabilityf < 1.0, shown in Figure 6,
has, in iTrust, a significant detrimental effect on the match
probability, shown in Figure 10. The match probability is
traded off against the number of messages required (message
cost), shown in Figure 7. For example, withc = 3, l = 4
and f = 0.6, the mean message cost is about the same as
with c = 3, l = 3 and f = 1.0, but the variability in the
message cost is greater, and the match probability is lower,in
the former case than in the latter case. However, sometimes
settingf < 1.0 might be useful. For example, withc = 3,
l = 4 and f = 0.8, the match probability is still high but
the message cost is much less than withc = 3, l = 4 and
f = 1.0. Nonetheless, this case must be compared with
c = 2, l = 5 andf = 1.0, which has an equally high match
probability and a lower message cost with less variability.

VI. RELATED WORK

Message forwarding has been used as an alternative to
multicasting by a single source node, and in gossiping
protocols. Hedetniemiet al. [13] present a survey of the
theory of gossiping and broadcasting in communication
networks. Shah [20] provides a comprehensive discussion of

Figure 10. Match probabilities for iTrust with message forwarding, for
various values ofc, f and l whenn = 1000 andx = 1.0.

gossip algorithms. Farley [6] presents algorithms that con-
struct broadcast networks with approximately the minimum
number of links. He also determines upper and lower bounds
to broadcastm messages throughout a network ofn nodes
[7], but he does not consider probability density functions.

Deering and Cheriton [5] provide a survey of multicast
routing, using spanning trees along which messages are for-
warded in internetworks and extended local-area networks.
Lin et al. [15] exploit directional information for gossiping
in wide-area networks. Castroet al. [1] describe a scalable,
decentralized multicast infrastructure based on gossiping,
which is extended to a hierarchical infrastructure in [12].

Gnutella [11], one of the first unstructured information
sharing networks, uses flooding of requests to find informa-
tion. A node makes a copy of a file when it receives the file
it requested. If the query rate is high, nodes quickly become
overloaded and the system ceases to function satisfactorily.
Freenet [4] is more efficient than Gnutella, because it learns
from previous requests. In Freenet, nodes that successfully
respond to requests receive more metadata and more re-
quests, making it easy for a group of untrustworthy nodes
to gather most of the searches into their group.

Other peer-to-peer systems use random walks to improve
on the flooding of Gnutella. Random walks correspond to
c = 1 with larger values ofl, in our notation. For example,
Ferreiraet al. [9] use random walks to replicate the metadata
and the requests to the square root of the number of nodes
in the network. Lvet al. [16] use random walks and start
with uniform random replication of data, but then adaptively
adjust the replication degree based on the query rate, and
use square root replication to improve performance. Zhong
and Shen [22] use random walks for requests, where the
number of nodes visited by a request is proportional to the
square root of the request popularity. Gia [2] employs biased
random walks to direct queries towards high-capacity nodes.
In contrast, iTrust distributes the metadata and the requests
to nodes that are chosen uniformly at random.

BubbleStorm [21] replicates both queries and data, and
combines random walks and flooding to perform exhaustive



search. Lenget al. [14] present mechanisms for maintaining
the desired degree of replication in BubbleStorm. The iTrust
system does not use exhaustive search but, rather, distributes
the metadata and the requests to2

√
n nodes to achieve a high

probability of a match.
Gkantsidiset al. [10] show that, for searching, random

walks achieve better results than flooding in two cases: (1)
when peers form two-tier clusters, and (2) when clients re-
issue queries repeatedly. Generally, random walks are more
susceptible to node and communication faults than flooding,
and can result in higher latency for responses to requests.
The iTrust network with forwarding uses larger values of
c and smaller values ofl than random walks, with less
vulnerability to malicious nodes that do not forward.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented an analysis of the match probabilities
of the iTrust information network with message forwarding.
We have shown that, in iTrust, relatively small values of
the forwarding fanoutc and the forwarding levell with
a forwarding probabilityf = 1.0 result in the metadata
and request messages being distributed to2

√
n nodes and,

thus, a high match probability and a reasonable message
cost. With f < 1.0, the number of nodes reached and the
match probabilities exhibit much greater variability, with
detrimental effects on the match probabilities. Thus, for the
iTrust network with forwarding, it is preferable to adjustc

and l and to keepf = 1.0.
In future work, we plan to investigate the match prob-

abilities of iTrust in the presence of message forwarding
for networks that are not completely connected. In par-
ticular, many networks, particularly social networks, con-
tain neighborhoods that are completely connected locally
but where connections to other neighborhoods are sparse.
Such networks can achieve very large sizes, without requir-
ing every node to have knowledge of a large number of
other nodes. Forwarding within neighborhoods, and between
neighborhoods, can achieve greater scalability of the iTrust
information network.
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