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Abstract

Trustworthy Distributed Search

and Retrieval over the Internet

Yung-Ting Chuang

Currently, our trust in the accessibility of information over the Internet

and the Web depends on benign and unbiased administration of centralized

search engines. Unfortunately, a centralized search engine can be modified to

filter, conceal, or censor information. We present a decentralized search and

retrieval system, named iTrust, to address these problems.

First, we address the design and implementation of iTrust. Source nodes

distribute metadata for information along with the address of the information

to randomly chosen nodes. Similarly, requesting nodes distribute requests that

contain keywords to randomly chosen nodes. Nodes that receive a request

compare the keywords with the metadata they hold, and return the URL of

the information to the requesting node if they have a match. For appropriate

values of the parameters, the probability of a match is very high.

Next, we present statistical algorithms for detecting and defending against

malicious attacks. Our statistical detection algorithm compares the empirical

and analytical probabilities of a match to estimate the proportion of non-

operational nodes in the membership. The defensive adaptation algorithm

then increases the number of nodes to which the requests are distributed to

xvi



maintain the same probability of a match when some of the nodes are non-

operational as when all of the nodes are operational.

Then, we consider an environment in which nodes join or leave the mem-

bership rapidly. Our adaptive membership protocol allows nodes to discover

changes in the membership using the iTrust messages and responses that it

normally receives. A node then dynamically adjusts its requesting rate, and

sends more request messages to compensate for nodes from which it did not

receive a response. The protocol exploits messages already being sent to dis-

tribute metadata or requests, thus reducing the need for additional messages.

Finally, we combine our adaptive membership protocol with our algorithms

for detecting and defending against malicious nodes. The combined adaptation

algorithm estimates changes in the membership to improve the behavior of

iTrust. We demonstrate that the combined adaptive algorithm is effective and

robust when the membership churn is high and when there are malicious nodes

in the membership.

xvii



Contents

Acknowledgements v

Curriculum Vitæ x

List of Figures xxii

List of Tables xxiv

1 Introduction 1

1.1 Overview of iTrust . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Trustworthy Distributed Search and Retrieval . . . . . 3
1.2.2 Protecting against Malicious Attacks in iTrust . . . . . 4
1.2.3 Membership Management for iTrust . . . . . . . . . . . 6
1.2.4 Statistical Inference and Dynamic Adaptation for iTrust 7

1.3 Organization of This Dissertation . . . . . . . . . . . . . . . . 8

2 Related Work 10

2.1 Peer-to-Peer Networks . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Trustworthy Distributed Search and Retrieval 25

3.1 Design of iTrust . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Implementation of the iTrust System . . . . . . . . . . . . . . 28

3.2.1 Web Server Foundation . . . . . . . . . . . . . . . . . . 28
3.2.2 Application Infrastructure . . . . . . . . . . . . . . . . 31
3.2.3 Public Interface . . . . . . . . . . . . . . . . . . . . . . 32

3.3 User Interface of iTrust . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Node Administration . . . . . . . . . . . . . . . . . . . 34
3.3.2 User Queries . . . . . . . . . . . . . . . . . . . . . . . . 36

xviii



3.3.3 User Settings . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Performance Evaluation of iTrust . . . . . . . . . . . . . . . . 39

3.4.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Emulation of iTrust . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Performance Evaluation Results . . . . . . . . . . . . . 44

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Protecting against Malicious Attacks in iTrust 51

4.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 Assumptions and Notation . . . . . . . . . . . . . . . . 54
4.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 57
4.1.4 Ranges for the Evaluation . . . . . . . . . . . . . . . . 57

4.2 Detecting Malicious Attacks . . . . . . . . . . . . . . . . . . . 59
4.2.1 Chi-Squared Test and Modified Chi-Squared Test . . . 60
4.2.2 Detection Algorithm . . . . . . . . . . . . . . . . . . . 62
4.2.3 Determining Appropriate Values of s and t . . . . . . . 65
4.2.4 Determining an Appropriate Value of K . . . . . . . . 67
4.2.5 Chi-Squared Test vs. Modified Chi-Squared Test . . . . 69

4.3 Defending against Malicious Attacks . . . . . . . . . . . . . . 70
4.3.1 Defensive Adaptation Algorithm . . . . . . . . . . . . . 72

4.4 Combining the Algorithms . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Exponential Weighted Moving Average Method . . . . 72
4.4.2 Combined Algorithms . . . . . . . . . . . . . . . . . . 77

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Number of Nodes . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 Extended Scenario . . . . . . . . . . . . . . . . . . . . 83

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Membership Management for iTrust 87

5.1 iTrust Membership Protocols . . . . . . . . . . . . . . . . . . 88
5.1.1 Joining the Membership . . . . . . . . . . . . . . . . . 88
5.1.2 Leaving the Membership . . . . . . . . . . . . . . . . . 89
5.1.3 Updating the Membership . . . . . . . . . . . . . . . . 91

5.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.1 Environmental Variables . . . . . . . . . . . . . . . . . 94
5.2.2 Parameters for the Membership Protocols . . . . . . . 94
5.2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . 96
5.2.4 Measured Values . . . . . . . . . . . . . . . . . . . . . 98
5.2.5 Exponential Weighted Moving Average Algorithm . . . 99
5.2.6 Experimental Methodology . . . . . . . . . . . . . . . . 101

5.3 Non-Adaptive Membership Protocol . . . . . . . . . . . . . . . 101
5.3.1 Investigation of LastJ . . . . . . . . . . . . . . . . . . 103

xix



5.4 Retry R Membership Protocol . . . . . . . . . . . . . . . . . . 106
5.4.1 Investigation of Try . . . . . . . . . . . . . . . . . . . 109

5.5 Adaptive RR Membership Protocol . . . . . . . . . . . . . . . 110
5.5.1 Non-Adaptive vs. Retry R vs. Adaptive RR . . . . . . 113

5.6 Combined Adaptive Membership Protocol . . . . . . . . . . . . 116
5.6.1 Investigation of RRMax . . . . . . . . . . . . . . . . . 119
5.6.2 Retry R vs. Adaptive RR vs. Combined Adaptive . . . 120

5.7 Extended Scenario . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7.1 Non-Adaptive . . . . . . . . . . . . . . . . . . . . . . . 124
5.7.2 Combined Adaptive . . . . . . . . . . . . . . . . . . . . 126

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Statistical Inference and Dynamic Adaptation for iTrust 133

6.1 Design of iTrust . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.1 Joining the Membership . . . . . . . . . . . . . . . . . 134
6.1.2 Leaving the Membership . . . . . . . . . . . . . . . . . 136
6.1.3 Distributing Metadata . . . . . . . . . . . . . . . . . . 137
6.1.4 Distributing Requests . . . . . . . . . . . . . . . . . . . 137
6.1.5 Updating the View . . . . . . . . . . . . . . . . . . . . 138

6.2 Model for iTrust . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.1 System and Fault Model . . . . . . . . . . . . . . . . . 141

6.3 Protecting Against Malicious Nodes . . . . . . . . . . . . . . . 144
6.3.1 Detecting Malicious Nodes . . . . . . . . . . . . . . . . 145
6.3.2 Defending against Malicious Nodes . . . . . . . . . . . 147

6.4 Dynamic Adaptation Algorithm . . . . . . . . . . . . . . . . . 150
6.4.1 Parameters and Variables . . . . . . . . . . . . . . . . 151
6.4.2 Pseudocode for the Dynamic Adaptation
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4.3 Distribute Method . . . . . . . . . . . . . . . . . . . . 159

6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 161
6.5.1 Experimental Methodology . . . . . . . . . . . . . . . . 161
6.5.2 Performance Metrics . . . . . . . . . . . . . . . . . . . 163
6.5.3 Varying JR and LR . . . . . . . . . . . . . . . . . . . 164
6.5.4 Varying X . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.5.5 Effectiveness of the Dynamic Adaptive Algorithm . . . 171

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Conclusions and Future Work 173

7.1 Trustworthy Distributed Search and
Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 Protecting against Malicious Attacks in iTrust . . . . . . . . . 175
7.3 Membership Management for iTrust . . . . . . . . . . . . . . . 177

xx



7.4 Statistical Inference and Dynamic
Adaptation for iTrust . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 181

xxi



List of Figures

3.1 A source node distributes its metadata to other nodes . . . . . 27
3.2 A requesting node distributes its request to other nodes . . . . 27
3.3 The matching node returns the URL to the requesting node. . 27
3.4 The iTrust System . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 The Administration Interface. . . . . . . . . . . . . . . . . . . 35
3.6 The Insert Resource Web page. . . . . . . . . . . . . . . . . . 36
3.7 The Query Results Web page. . . . . . . . . . . . . . . . . . . 37
3.8 The user settings Web page. . . . . . . . . . . . . . . . . . . . 38
3.9 Pseudocode for calculating the analytical probabilities . . . . . 41
3.10 The probabilities of a match where n = 1000 . . . . . . . . . . 42
3.11 Match probability where n = 36 . . . . . . . . . . . . . . . . . 45
3.12 Match probability where n = 72 . . . . . . . . . . . . . . . . . 45
3.13 Match probability where n = 144 . . . . . . . . . . . . . . . . 45
3.14 Match probability where n = 144 and x = 1 . . . . . . . . . . 48
3.15 Match probability where n = 144 and x = 0.8 . . . . . . . . . 48
3.16 Match probability where n = 144 and x = 0.6 . . . . . . . . . 48

4.1 Pseudocode for normalizing the probabilities . . . . . . . . . . 56
4.2 RangeA and RangeB for a total of 2000 samples . . . . . . . . 58
4.3 Chi-squared method. . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Modified chi-squared method. . . . . . . . . . . . . . . . . . . 62
4.5 The normalized expected probabilities of the number k of matches 63
4.6 Mean accuracy and mean response time with various K and t 68
4.7 Chi-squared statistic vs. modified chi-squared statistic . . . . 70
4.8 Increasing the number of nodes to which requests are distributed 71
4.9 Pseudocode for the Defensive Adaptation Algorithm . . . . . . 73
4.10 Pseudocode for the EWMA method . . . . . . . . . . . . . . . 75
4.11 Mean accuracy and mean response time with various c . . . . 76
4.12 Pseudocode for the combined algorithms . . . . . . . . . . . . 78
4.13 Mean accuracy and mean response time with various c and n . 81
4.14 Mean accuracy and mean response time with various x and n 82

xxii



4.15 Four graphs (x, x′, r′, p) . . . . . . . . . . . . . . . . . . . . . 83

5.1 Joining the membership . . . . . . . . . . . . . . . . . . . . . 90
5.2 Discovering newly joining nodes . . . . . . . . . . . . . . . . . 90
5.3 Detecting leaving nodes . . . . . . . . . . . . . . . . . . . . . 90
5.4 A node’s current view versus the actual membership . . . . . . 97
5.5 Pseudocode for the EWMA algorithm. . . . . . . . . . . . . . 100
5.6 Pseudocode for the Non-Adaptive Membership Protocol . . . . 102
5.7 Graphs of LND and JND where LastJ = 1 . . . . . . . . . . 105
5.8 Graphs of LND and JND where LastJ = 2 . . . . . . . . . . 105
5.9 Graphs of LND and JND where LastJ = 3 . . . . . . . . . . 105
5.10 Pseudocode for the Retry R Membership Protocol . . . . . . . 107
5.11 Pseudocode for the Adaptive RR Membership Protocol . . . . 111
5.12 Graphs of LND and JND for Non-Adaptive Protocol . . . . 114
5.13 Graphs of LND and JND for Retry R Protocol . . . . . . . . 114
5.14 Graphs of LND and JND for Adaptive RR Protocol . . . . . 114
5.15 Pseudocode for the Combined Adaptive Membership Protocol. 117
5.16 Pareto optimal curve where JR = 300, LR = 300 . . . . . . . 122
5.17 Four graphs for Non-Adaptive Protocol . . . . . . . . . . . . . 124
5.18 Five graphs for Combined Adaptive Protocol . . . . . . . . . . 126
5.19 Pareto optimal curve for the extended scenario . . . . . . . . . 130

6.1 Joining the membership . . . . . . . . . . . . . . . . . . . . . 135
6.2 Leaving the membership . . . . . . . . . . . . . . . . . . . . . 135
6.3 Distributing metadata . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Distributing requests . . . . . . . . . . . . . . . . . . . . . . . 139
6.5 Discovering newly joining nodes . . . . . . . . . . . . . . . . . 139
6.6 Detecting leaving nodes . . . . . . . . . . . . . . . . . . . . . 139
6.7 A node’s current view vs. the actual membership . . . . . . . 143
6.8 The normalized expected probabilities of the number k of matches 146
6.9 Pseudocode for the Detection Algorithm . . . . . . . . . . . . 148
6.10 Increasing the number of nodes to which requests are distributed 149
6.11 Pseudocode for the Defensive Adaptation Algorithm . . . . . . 150
6.12 Pseudocode for the Dynamic Adaptive Algorithm. . . . . . . . 156
6.13 Pseudocode for the Distribute() method. . . . . . . . . . . . . 160
6.14 Graphs for the extended scenario with various JR and LR . . 165
6.15 Graphs for the extended scenario with various values of X . . 168

xxiii



List of Tables

4.1 Mean accuracy and the mean response time for s = 1, 5, 10 . . 66
4.2 Unnormalized Observed Pi(k), 1 ≤ k ≤ 60, 0 ≤ i ≤ 7. . . . . . 74
4.3 Various n and corresponding ⌈2√n ⌉ . . . . . . . . . . . . . . 80

5.1 Retry R with Try = 1, 2, 3,∞. . . . . . . . . . . . . . . . . . . 110
5.2 Non-Adaptive vs. Retry R vs. Adaptive RR . . . . . . . . . . 113
5.3 Combined Adaptive with RRMax = 100, 50, 30. . . . . . . . . 120
5.4 Retry R vs. Adaptive RR vs. Combined Adaptive . . . . . . . 121
5.5 Comparison of four membership protocols . . . . . . . . . . . 129

6.1 Varying JR and LR with X = 0.6 . . . . . . . . . . . . . . . . 166
6.2 Varying X with LR = JR = 300 . . . . . . . . . . . . . . . . . 170

xxiv



Chapter 1

Introduction

Our modern world relies heavily on the ability to publish, search for, and

retrieve information over the Internet, which has created a highly distributed

information society, distributed in both the sources of information and the

uses of information. For reasons of efficiency and scalability, conventional

search and retrieval over the Internet employs centralized search engines. In

the Internet today, the administrators of those centralized facilities are benign.

Unfortunately, the experience of history, and even the common wisdom

today, appear to indicate that we cannot depend on such administrators to

remain benign and unbiased in the future. The incident of the Beacon ad-

vertising mechanism on Facebook [78] demonstrated how easily control over a

centralized mechanism can be subverted. Perhaps the moment at which we are

most dependent on our abilities to communicate over the Internet is also the

moment at which centralized Internet search is most likely to be compromised.

One of the problems with a fully distributed system is that it is very dif-

ficult to infer information that cannot be measured directly. An example is
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estimating the proportion of malicious nodes in the network. Another exam-

ple is measuring the size of the network when the network has a lot of churn.

The reason is that in a fully distributed system, nodes are joining and leaving

the network; thus, no single node has a complete and up-to-date view of the

network.

This Ph.D. Dissertation addresses the distribution and retrieval of informa-

tion, without centralized search engines and without centralized search indices.

It provides detection and defensive adaptation algorithms to protect against

malicious nodes in the network, adaptive membership management protocols

when the membership has a lot of churn, and statistical inference algorithms

to manage the network when both the membership churn and the proportion

of malicious nodes are high. The specific contributions of this Ph.D. Disser-

tation are presented in Section 1.2, and are described in detail in subsequent

chapters.

1.1 Overview of iTrust

The iTrust system [2, 18, 19, 60, 61] is a decentralized and distributed

information publication, search, and retrieval system that makes it difficult to

censor or filter information accessed over the Internet. iTrust operates over an

unstructured peer-to-peer network, and uses a probabilistic approach.
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Some nodes (the source nodes) produce information, and make that in-

formation available to other nodes chosen at random. The source nodes also

produce metadata that describes their information, and distribute that meta-

data to a subset of nodes chosen at random. The metadata are distinct from

the information that they describe, and include a list of keywords and the

URL of the source of the information.

Other nodes (the requesting nodes) request and retrieve information. Such

nodes generate requests that contain keywords, and distribute the requests

to a subset of the nodes chosen at random. The other nodes compare the

keywords in the requests with the metadata that they hold. If such a node

finds a match, which we call an encounter, the matching node returns the

URL of the associated information to the requesting node. The requesting

node then uses the URL to retrieve the information from the source node.

1.2 Contributions

In this section, we discuss the problems that we have addressed in our

research and the main contributions of this Ph.D. Dissertation.

1.2.1 Trustworthy Distributed Search and Retrieval

Our trust in the accessibility of information over the Internet and the Web

(hereafter referred to as the Internet) depends on centralized search engines
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and centralized search indices to increase scalability and efficiency. In the

Internet today, the administrators of those centralized facilities are benign.

However, the experience of history shows that the centralized Internet search

engines can be tampered with to bias the results and to conceal or censor

information.

To prevent censorship and filtering of information accessed over the Inter-

net, we present the iTrust system for a trustworthy publication, distribution

and retrieval of information over the Internet, with no centralized mechanisms

and no centralized control. iTrust is particularly valuable for individuals who

fear that the conventional Internet search mechanisms might be subverted.

Therefore, the very existence of iTrust helps to deter censorship attempts.

1.2.2 Protecting against Malicious Attacks in iTrust

Effective use of iTrust depends on information about the network that

might be difficult to obtain, such as information about uncooperative or ma-

licious nodes that might deliberately attempt to conceal information about

sensitive topics by failing to report matches for requests related to those top-

ics. The absence of centralized control makes it difficult to determine such

information. Other peer-to-peer and dynamic networks [33, 56, 75, 80] face

similar problems.

When a requesting node makes a request, it often results in multiple re-

sponses, which most people would consider to be a waste. Our observations
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and contributions are that these multiple responses do not constitute waste

but rather, they provide valuable information about the network that is diffi-

cult to obtain directly. In particular, the multiple responses allow a node to

estimate the proportion of non-operational or subverted nodes.

Based on the responses to a request, we present novel statistical inference

algorithms for detecting and defending against malicious attacks in the iTrust

network. The detection algorithm detects changes in the proportion of op-

erational nodes, and the defensive adaptation algorithm changes the number

of nodes to which the requests are distributed, in order to maintain a high

match probability. Experimental results substantiate the effectiveness of the

detection and defensive adaptation algorithms for protecting against malicious

attacks.

The novelty of our work is that we associate the absence of action with the

intent to censor sensitive information, when absence of action is a permissible

behavior if a node does not hold metadata for that information. We use a

statistical method, together with an analytical model, to infer characteristics

of the network that are unmeasurable directly. In iTrust, the nodes infer

useful but unobservable information about the network by observing aspects

of the behaviors of the nodes that are visible to them. More specifically, the

nodes infer such information by monitoring the responses to their requests. As

far as we are aware, iTrust is the first system that infers that nodes are not

responding in order to conceal sensitive information.
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1.2.3 Membership Management for iTrust

Joining and leaving the membership, or membership churn, is an inherent

aspect of peer-to-peer networks and, is critical for designs and evaluations of

the membership algorithms. Accurately estimating the joining and leaving of

nodes is a challenging task, due to the large size and highly dynamic nature

of peer-to-peer networks.

Prior work [12, 34, 51, 42] on membership has focused on an agreed accu-

rate membership in the presence of unreliable processors and communication.

Our membership algorithms are simpler and less costly than such prior work

because they do not attempt to achieve an agreed accurate membership based

on a consensus algorithm, which is known to be impossible [9]. Our member-

ship algorithms for iTrust allow each member to have its own local view of the

membership, but aim to keep that local view close to the actual membership.

In our membership algorithms, a requesting node discovers newly joining

nodes and leaving (non-operational) nodes from the responses it receives to its

requests. Thus, they exploit messages already required by the iTrust messaging

protocol for search and retrieval, rather than additional messages used only

for membership.

Lastly, each member estimates the churn in the membership by random

sampling, and then adaptively adjusts its requesting rate to update its local

view of the membership. Using a churn estimator, a node dynamically adjusts
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its requesting rate or sends a few more request messages. Hence, our member-

ship protocols work well when the membership has a lot of churn and when

the membership is stable. Moreover, for appropriate values of the parameters,

the membership accuracy, response time, and message cost are reasonable, and

the match probability is high.

1.2.4 Statistical Inference and Dynamic Adaptation for

iTrust

One of the problems with fully distributed system is the difficulty of in-

ferring information that cannot be measured directly. An example of such

information in iTrust is the proportion of malicious nodes in the membership.

Another example is the size of the membership because in a fully distributed

system in which many nodes are joining and leaving the membership, no single

node has a complete and up-to-date view of the membership.

To address these problems, we provide statistical inference algorithms for

estimating the proportion of malicious nodes and the size of the membership.

These algorithms are sufficiently accurate and timely to allow them to be used

to manage iTrust in the presence of both membership churn and malicious

nodes. In particular, we present a Dynamic Adaptive Algorithm for iTrust

that not only maintains a node’s local view of the membership but also pro-

tects iTrust against malicious attacks. Our algorithm uses random sampling
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and statistical inference to estimate metrics that are not directly observable.

Experimental results demonstrate that the algorithm works well when the

membership has a lot of churn, when the membership is stable, and when the

membership has a lot of malicious nodes.

1.3 Organization of This Dissertation

The rest of this dissertation is organized as follows:

In Chapter 2, we discuss related work in terms of distributed search and

information retrieval, malicious attacks, membership management, and

membership churn.

In Chapter 3, we describe a novel information distribution and retrieval

system, named iTrust, that operates over HTTP and the Internet and

that provides trustworthy access to information [19, 60, 61]. First, we

present an overview of the iTrust strategy, the implementation of the

iTrust system, and the user interface. Then, we present a performance

evaluation of the probability of a match based on both analysis and on

emulation of iTrust.

In Chapter 4, we present novel statistical algorithms for detecting and

defending against malicious attacks in the iTrust information retrieval

network [13, 17, 18]. These algorithms employ the exponential weighted
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moving average method to collect empirical data, and the chi-squared

test to estimate the proportion of operational nodes.

In Chapter 5, we present adaptive and non-adaptive membership man-

agement protocols for the iTrust information retrieval network [14, 16].

We compare the performance of the non-adaptive and adaptive member-

ship protocols, with respect to membership accuracy, match probability,

response time, and message cost, for various values of the parameters

when the membership churn is high and when the membership is stable.

In Chapter 6, we present statistical inference algorithms [15] to estimate

the proportion of malicious nodes and the size of the membership, and

demonstrate that these algorithms are sufficiently accurate and timely to

allow them to be used to manage iTrust in the presence of membership

churn and malicious nodes.

In Chapter 7, we conclude the dissertation with a summary of our con-

tributions, and a discussion of directions for future research.
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Related Work

In this chapter, we discuss related work in the area of distributed search,

malicious attacks, trustworthiness, membership management, and membership

churn. First, in Section 2.1, we provide work related to distributed search in

peer-to-peer networks. Distributed search strategies are categorized as either

structured or unstructured, and we discuss related work to both categories.

In addition, we provide related work on randomization and the square root

functions.

Next, in Section 2.2, we present existing work related to trust. We begin

the section by discussing social networks where the primary concern is trust-

worthiness. We then present work related to detection and defense against

attacks to improve trustworthiness. Then, we discuss work related to the ex-

ponential weighted moving average and chi-squared statistic, which is widely

used in intrusion and anomaly detection.

In Section 2.3, we discuss work related to membership management and

membership churn. First, we introduce peer-to-peer membership protocols
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based on an agreed accurate membership. We then present membership pro-

tocols based on gossiping and neighborhood selections biased toward beneficial

nodes. Lastly, we discuss related work that considers membership churn, leaves

and crashes. In addition, we present related work that focuses on estimating

churn rate and adapting accordingly.

2.1 Peer-to-Peer Networks

Today, the centralized search engine strategy (such as that of Google [38])

is used commercially for Internet search, where metadata for the information

are held in a centralized index [7]. Requests are submitted to the central site,

where they are matched against the metadata. Matches are returned to the

requesting node, which retrieves the information from the source node. The

centralized search engine strategy is efficient and scalable, but it is vulnerable

to manipulation by administrators.

In the publish/subscribe model [29], a query is submitted and stored, and

the query subscriber is notified when the results become available. The cen-

tralized publish/subscribe approach uses a centralized index [11, 30, 46], where

all of the information and the queries are published. The approach is neither

efficient nor scalable for large networks, not to mention the issues of trust of

the centralized site.
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Bender et al. [4] recognize the need for decentralized peer-to-peer Web

search because “existing Web search is more or less exclusively under the

control of centralized search engines.” Mischke and Stiller [64] provide a tax-

onomy of distributed search mechanisms in peer-to-peer networks. Another

useful survey of such mechanisms is provided by Risson and Moors [71]. The

distributed publish/subscribe approach can be categorized as either structure-

based or gossip-based.

The structured approach [8, 44, 79, 81] requires the nodes to be organized in

an overlay structure, based on Distributed Hash Tables (DHT) [70, 73, 74, 77,

95], skip lists [41, 69], rings [25, 59, 86] or trees [5]. The structured approach

is more efficient than the gossip-based approach, but it involves additional

overhead for constructing and maintaining the overlay network. Moreover,

churn or malicious disruptions can break the structure.

The unstructured approach [20, 33, 49, 79, 96, 36, 37, 67, 80, 82, 88] is

typically based on gossiping, uses randomization, and requires the subscriber

nodes and the publisher nodes to find each other by exchanging messages over

existing links. iTrust falls within the unstructured distributed search category.

Cohen and Shenker [22] have studied how replication can be used to im-

prove search in unstructured peer-to-peer networks. They show that square

root replication is theoretically optimal in terms of minimizing the overall

search traffic. They replicate objects based on access frequencies (populari-

12



Chapter 2. Related Work

ties), whereas iTrust uses uniform random replication of objects, so that pop-

ular nodes are not more vulnerable to attacks.

Gnutella [37] was developed as an information (music) distribution net-

work, following the collapse of Napster [66]. Gnutella uses flooding of requests

to find information, with each node redistributing requests up to a maximum

depth or time-to-live. When a request reaches a node holding the information

that matches a request, the node transmits the information to the requester.

If the query rate is high, nodes quickly become overloaded and the system

ceases to function satisfactorily. Extensions of Gnutella involve supernodes

[89], which improve efficiency but reintroduce some of the trust risks of cen-

tralized strategies. An interesting variation [96] involves random walks for

requests in which the number of nodes visited by a request is proportional

to the square root of the request popularity of the information, as in [22].

Another interesting variation [24] exploits search trees whose node degrees ap-

proximate the square root of the size of the network. Like these researchers,

we also exploit the square root function in iTrust.

Freenet [20, 67] is more sophisticated and efficient than Gnutella, because it

learns from previous requests, both in directing subsequent requests to nodes

where earlier similar requests were successful, and in pre-positioning meta-

data or information at nodes that have requested that information. Similar

strategies can be found in [21, 28, 92, 94]. Freenet has two characteristics

that make it unsuitable for trustworthy information distribution and retrieval
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in large networks, namely: (1) Learning takes time and the first few requests

for information are handled very inefficiently. (2) Nodes that successfully re-

spond to requests receive more metadata and more requests. Thus, it is easy

for a group of untrustworthy nodes to conspire together to gather most of

the searches into their group, making Freenet vulnerable to subversion. The

Adaptive Probabilistic Search (APS) method [83] also uses feedback from pre-

vious searches to direct future searches, instead of distributing the requests to

randomly selected nodes, like iTrust does.

Ferreira et al. [1, 33] use a random-walk strategy in unstructured networks

to replicate both queries and data to the square root of the number of nodes

in the network. Their strategy uses random walks for replication, with biased

probabilities to reduce the effects of heterogeneity. Unlike [22], in their sys-

tem, replication of metadata and requests is independent of access frequency

(popularity), as in iTrust. Like their system, iTrust exploits the square root

function to replicate the metadata and the requests.

GIA [10] is an unstructured system that combines biased random walks

with one-hop data replication. It uses heuristics to place most nodes within

short reach of high capacity nodes. Lv et al. [56] start with uniform random

replication of data, using square root replication to improve the performance,

but then adaptively adjust the replication degree based on the query rate

by creating and deleting replicas of the data. They also use random walks
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to improve on the flooding of Gnutella. Like those systems, iTrust exploits

randomization and replication.

Galanx [87] uses a local peer index to direct user queries to relevant nodes

in the network. It is based on the Apache Web server and on the BerkeleyDB

data store. iTrust likewise utilizes the Apache Web server, and maintains a

local index of metadata and corresponding URLs for the data.

Pub-2-Sub [82] is a content-based publish/subscribe service for unstruc-

tured peer-to-peer networks of cooperative nodes. Instead of gossiping, Pub-

2-Sub uses directed routing to distribute subscription and publication messages

to the nodes. Their objective is efficiency, which is not the primary concern

of iTrust.

Systems based on social networks [43, 58] exploit the trust that members

have in other members, and route information and requests based on rela-

tionships between members. Existing social networks, like Facebook [31], are

typically centrally administered and depend on benign administrators. Gum-

madi et al. [43] investigate the integration of social network search with Web

search. They conclude that such integration can lead to more timely and ef-

ficient search experiences. Yang et al. [90] propose a search mechanism for

unstructured peer-to-peer networks based on interest groups, formed by nodes

with similar interests. iTrust likewise allows users interested in a particular

topic or cause to form a social network, so that they can share information.
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2.2 Trustworthiness

None of the above unstructured systems is particularly concerned with

trust as is iTrust.

Two other systems that like iTrust, are concerned with trust are Quasar

and OneSwarm. Quasar [88] is a probabilistic publish/subscribe system for

social networks with many social groups. The key mechanism is a rendezvous-

less event routing infrastructure that routes messages directly to nearby group

members using local gradients of aggregated vectors or “gravity wells.” The

authors note that privacy and scalability concerns make centralized systems

undesirable to the users of social networks. They state that “an unwarranted

amount of trust is placed on these centralized systems to not reveal or take

advantage of sensitive information.” The iTrust distribution and retrieval

network does not use a structured overlay, but it does use rendezvous nodes

for matching metadata and requests, and it is concerned with trust. Thus, the

trust objective of Quasar is quite different from that of iTrust.

OneSwarm [49] is a peer-to-peer data sharing system that allows data to be

shared either publicly or anonymously, using a combination of trusted and un-

trusted peers. Content lookup and transfer are anonymous, congestion-aware,

and multipath. OneSwarm provides anonymous publication like Freenet [20]

and anonymous download like Tor [27]. Its initial goal is to protect the pri-

vacy of the users. The iTrust distribution and retrieval network does not aim
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to conceal the users like OneSwarm does. It allows anyone to participate,

and uses asymmetric encryption to prevent censoring by the Internet routers.

OneSwarm aims to protect the users’ privacy, whereas iTrust aims to support

free flow of information and to prevent censorship and filtering of information.

Morselli et al. [65] describe an adaptive replication protocol with a feedback

mechanism that adjusts the number of replicas according to the mean search

length, in order to determine whether an object is replicated sufficiently. Our

defensive adaptation algorithm for iTrust, described in Chapter 4, is quite

different from the adaptive replication protocol that they describe.

Sarshar et al. [75] use random walks and bond percolation in power law

networks with high-degree nodes. Such nodes are subject to overloading, and

are vulnerable to malicious attacks. The authors note that “protocols for

identifying or compensating for such attacks, or even recovering after such an

attack has disrupted the network are yet to be designed.” We address these

needs in Chapter 4.

Leng et al. [53] present mechanisms for maintaining the desired degree

of replication in BubbleStorm, when each object has a maintainer node. Our

defensive adaptation algorithm for iTrust uses different techniques to maintain

the desired degree of replication of requests.

Jesi et al. [50] identify malicious nodes in an overlay network based on

gossiping, and place such nodes on a blacklist. They focus on hub attacks

in which colluding malicious nodes partition the network by spreading false
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rumors. iTrust does not use gossiping but rather, distributes the metadata

and the requests to randomly selected nodes and, thus, is less subject to hub

attacks.

Condie et al. [23] present a protocol for finding adaptive peer-to-peer

topologies to protect against malicious peers that upload corrupt, inauthentic,

or misnamed content. Peers improve the trustworthiness of the network by

forming connections, based on local trust scores defined by past transactions.

Effectively, their protocol disconnects malicious peers and moves them to the

edge of the network. The adaptive algorithms of iTrust are quite different from

those protocols.

Several network security researchers use the exponential weighted moving

average and the chi-squared statistic, which we employ in Chapter 4 and 6.

In particular, Goonatilake et al. [39] apply the chi-squared statistic to de-

tect intrusions. Roberts [72] and Viinikka and Debar [84] use the exponential

weighted moving average to discover anomalies in the network and issue alerts.

Both groups of researchers discuss how to determine an appropriate λ (c in our

notation), based on a fixed window size. For the iTrust membership protocols,

we do not fix a window size but instead, consider all of the results from the

time a node joins the membership to the time it leaves the membership. More-

over, we make c tunable, so that the user can set it for a particular network

environment.
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Ye and Chen [91] and Zhou et al. [97] present anomaly detection techniques

for intrusion detection, based on the exponential weighted moving average

and the chi-squared statistic. Both groups of researchers report that these

techniques yield high detection rates, low false alarm rates, and early detection

of intrusions. The iTrust system uses the EWMA method and the chi-squared

test to determine the proportion of malicious nodes in a node’s view of the

membership.

Press et al. [68] use a modified chi-squared statistic to balance the weights

of the buckets, in order to compare two datasets. Similarly, Belen [3] and

Heckert [47] apply a modified chi-squared statistic to determine the similarity

between attribute couples of a dataset and a projected subset. In Chapter 4, we

demonstrate that the modified chi-squared statistic achieves better accuracy

in estimating the proportion of operational nodes in the iTrust network.

2.3 Membership

Prior work on membership has focused on an agreed accurate membership

in the presence of unreliable processors and unreliable communication. Chan-

dra et al. [9] show that it is impossible to achieve an agreed accurate member-

ship. Chockler et al. [12] provide a comprehensive survey of membership pro-

tocols and group communication systems, and of their formal specifications.

Schiper and Toueg [76] provide an elegant formalization of the membership
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problem that distinguishes between the problem of maintaining and agreeing

on a set of members and the problem of determining which processes are work-

ing and should be members. Our membership protocols for iTrust are simpler

and less costly than such prior work. They do not aim to achieve an agreed

accurate membership based on a consensus algorithm. Rather, they allow each

member to have its own local view of the membership, and aim to keep that

local view close to the actual membership.

SCAMP [35] is a peer-to-peer membership service for gossip-based pro-

tocols that operates in a decentralized and self-configured manner, where no

peer has global knowledge of the membership. A node that wishes to join

(leave) the membership notifies some nodes in the network to add (remove)

it to (from) their views. To prevent a node from becoming isolated, a node

periodically tries to discover new nodes if it does not receive any messages for

a given time period. Our membership protocols for iTrust place more empha-

sis on maintaining a node’s view of the membership when the membership is

subject to a lot of churn.

Zage et al. [93] present a network-aware and distributed membership proto-

col that improves the overall performance of a peer-to-peer network by biasing

neighbor selections towards beneficial nodes, based on multiple system met-

rics and social network patterns. The authors demonstrate the effectiveness of

their protocol through simulation, when the network has high churn rates. In

the iTrust membership protocols, the nodes do not maintain their views of the
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membership through biased neighbor selections. Rather, they discover newly

joining and leaving nodes through the normal course of search and retrieval.

Liu et al. [55] describe a novel age-based membership protocol with a

conservative neighbor maintenance scheme under churn, to retain desirable

properties such as a low network diameter and clustering coefficient. Thus, a

bootstrapping node recommends to a newly joining node only the nodes that

have remained in its membership for a long period of time. However, with their

protocol, a newly joining node might not discover other nodes in the mem-

bership very quickly. In the membership protocols for iTrust, a bootstrapping

node sends its entire membership to a newly joining node.

Voulgaris et al. [85] present a membership management protocol, named

CYCLON, for unstructured peer-to-peer networks, in which each node main-

tains a small and fixed-size neighbor list. The authors describe a shuffling pro-

tocol for large networks and provide an experimental analysis in which they

examine the clustering coefficient and node degree distribution. The iTrust

membership protocols differ from CYCLON in that each node tries to discover

as many nodes as possible to include in its view of the membership. Their work

is similar to the neighborhoods and de-clustering that we described previously

for large iTrust networks [2], rather than the work described in Chapter 5.

BubbleStorm [53, 80] is a probabilistic search system for peer-to-peer net-

works built on random multi-graphs that performs exhaustive search. Bub-

bleStorm replicates both queries and data, and combines random walks with
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flooding. It also considers churn, leaves and crashes, like the iTrust mem-

bership protocol does. When a node joins the network, it finds an existing

connection between two peers and interposes itself between them. When a

node leaves the network, it re-connects those two peers before it leaves. If a

node crashes without re-connecting its neighbors, the neighboring peer adds

a connection to the other peer when it discovers the crashed node. Thus,

BubbleStorm aims to maintain a fixed node degree at all of the nodes. The

iTrust membership protocols do not restrict the nodes to a fixed node degree

but rather, allow each node to maintain its local view of the membership.

PlanetP [26] maintains a local index that contains metadata for documents

published locally by a peer, and a global index that describes all peers and

their metadata in a Bloom filter, which it replicates throughout the network

using gossiping. iTrust likewise maintains a local index of metadata and cor-

responding URLs for the data. However, iTrust does not use gossiping to

distribute the membership but rather, allows each node to maintain its local

view of the membership by detecting leaving (non-operational) nodes and dis-

covering newly joining nodes through the normal course of operation of the

messaging protocol.

Binzenhofer and Leibnitz [6] introduce a method for structured peer-to-

peer networks that enables a peer to estimate the churn rate and to adapt

accordingly. Information is piggybacked onto messages to avoid unnecessary

overhead. In the iTrust membership protocols, a requesting node detects that
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nodes are non-operational if they do not respond to its requests, and it dis-

covers newly joining nodes from the responding nodes which piggyback newly

joined nodes onto their responses, thus reducing the overhead.

RandPeer [54] randomly assigns members to bins, where the bins are or-

ganized into a tree structure. When the bins become full, they are split and

the tree grows, resulting in a scalable structure with a logarithmic search cost.

However, the tree structure is vulnerable to unavailability or malice of the root

nodes. To render such a structure feasible for iTrust, it would be necessary to

introduce cross links, possibly randomized, into the structure.

Heen et al. [48] describe a membership algorithm for structured peer-to-

peer networks based on distributed hash tables. The algorithm requires an

administrator, and is not completely distributed. However, it does provide

communication between nodes that remains anonymous, exploiting crypto-

graphic addressing to maintain anonymity. We plan to investigate whether

such an anonymous addressing scheme is appropriate for iTrust.

Maki et al. [57] describe the use of cryptographic certificates to authen-

ticate the members of an ad-hoc network. Such a strategy might be used by

iTrust to ensure that malicious nodes do not attempt to impersonate other

nodes when distributing misleading information. Their strategy is leader-

based, but it permits multiple leaders, and might be applicable to more dis-

tributed membership protocols, such as those of iTrust.
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2.4 Summary

In this chapter, first we presented work related to distributed search mech-

anisms in peer-to-peer networks. Next, we presented work related to trust.

Finally, we discussed related work that focuses on membership management

and membership under churn.
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Trustworthy Distributed Search

and Retrieval

In this chapter, first we describe the design of iTrust, which is a novel

information distribution and retrieval system with no centralized mechanisms

and no centralized control. Next, we describe the implementation of the iTrust

system and present the user interface. Finally, we present a performance

evaluation of iTrust.

3.1 Design of iTrust

The iTrust information distribution and retrieval system involves no cen-

tralized mechanisms and no centralized control. We refer to the nodes that

participate in an iTrust network as the participating nodes or the membership.

An iTrust network might correspond to participants with specific interests, or

it might correspond to a social network. Multiple iTrust networks within the
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Internet may exist at any point in time, and a node may participate in several

different iTrust networks at the same time.

In an iTrust network, some nodes (the source nodes) produce information,

and make that information available to other participating nodes. The source

nodes produce metadata that describes their information, and distribute that

metadata to a subset of participating nodes that are chosen at random, as

shown in Figure 3.1. The metadata are distinct from the information that

they describe, and include a list of keywords and the URL of the source of the

information.

Other nodes (the requesting nodes) request and retrieve information. Such

nodes generate requests (also referred to as queries) that refer to the metadata,

and distribute the requests to a subset of the participating nodes that are

chosen at random, as shown in Figure 3.2.

The participating nodes compare the metadata in the requests (queries)

they receive with the metadata that they hold. If such a node finds a match,

which we call an encounter, the matching node returns the URL of the asso-

ciated information to the requesting node. The requesting node then uses the

URL to retrieve the information from the source node, as shown in Figure 3.3.

Distribution of metadata and requests to relatively few nodes suffices to

achieve a high probability that a match occurs. As we have shown [60], in

an iTrust membership with N nodes, distribution of the metadata to M =

2
√
N nodes and distribution of the requests to R = 2

√
N nodes results in a
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Figure 3.1: A node (a source node) distributes metadata, describing its
information, to randomly selected nodes in the network.

Figure 3.2: A node (a requesting node) distributes its request to randomly
selected nodes in the network. One of the nodes has both the metadata and
the request and, thus, an encounter occurs.

Figure 3.3: The node matches the metadata and the request and reports
the match to the requester, which then retrieves the information from the
source node.
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probability of a match that exceeds 1− e−4 ≈ 0.9817. Moreover, the strategy

is robust. Even if some of the randomly chosen nodes are subverted or non-

operational, the probability of a match is high, as shown in Section 3.4.3.

Furthermore, it is not easy for a small group of nodes to subvert the iTrust

mechanisms to control which information is delivered and which information

is suppressed.

3.2 Implementation of the iTrust System

The iTrust system on a node consists of three distinct components that in-

teract with each other to distribute metadata and requests and to retrieve in-

formation (resources). Figure 3.4 shows the three components: the Web server

foundation, the application infrastructure, and the public interface. Arrows

on connecting lines indicate the direction of information flow. The following

subsections describe these three components and their interactions.

3.2.1 Web Server Foundation

The basis of the current implementation of iTrust is the Apache Web server

compiled with several PHP standard modules and library extensions. The Web

server foundation component contains no custom code; all software is used as

is, which enables rapid node deployment. iTrust utilizes various standard

modules, including the session and logging modules described below.
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Figure 3.4: The iTrust system, which comprises (a) the Web server foun-
dation, (b) the application infrastructure, and (c) the public interface.

The session module allows tracking of users on each node, so that multiple

users can interact with the same node at the same time in a convenient man-

ner (i.e., without having to re-enter the same data on each Web page load).

For example, session variables persist between multiple Web page fetches and

between multiple resource retrievals. However, all session variables are purely

for the convenience of the user, and a careful user may safely turn off session

tracking (with only a minor inconvenience of re-entering certain data occa-

sionally). In either case, all session data are deleted when the session (the

Web browser window) is closed; there is no ability to identify a given user in

subsequent sessions.
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The logging module is enabled only for debugging and simulation, and

can be disabled at any time by the node administrator. There is no direct

relationship between the logging and session functions, i.e., a user’s actions

cannot be tracked simply by viewing access logs (unless, of course, only one

individual ever uses the node). The log file is written to disk but optionally,

may be automatically emailed to the node administrator. In the case where

there are multiple nodes on the same computer, all of the nodes share the same

log file and prefix each log entry with a unique node identifier.

iTrust also utilizes compiled-in modules, including cURL, SQLite, and the

PHP Extension Community Library (PECL) for HTTP, as described below.

The cURL functions are used primarily for inter-node communication and

resource-specific actions. When a resource is added to a node, a call may

be made to that resource’s URL to scan for metadata automatically. cURL

automatically follows HTTP redirects and resolves file dependencies (such as

HTML frame sources and image sources). Both the fetched text and the

fetched images are accessible to the Java jar files, as described below.

SQLite is used for all administrative information such as node, metadata

and resource information. For example, the node membership is stored in a

database table, and the relationships between the metadata and the resources

are stored in a normalized table. SQL constraints enforce several fundamental

iTrust features, such as non-duplicate node addresses in the membership and

unique resource URLs. Use of SQLite as a PHP module, instead of MySQL or
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PostgreSQL servers, aids with the rapid deployment of iTrust nodes. iTrust

works on any reasonably modern Web host, because the file-as-a-database

model of SQLite requires only minimal local write privileges.

The PHP Extension Community Library (PECL) for HTTP is an external

compiled-in module used for inter-node search and metadata queries. A re-

questing node may use PECL HTTP to send a POST statement to a potential

source node to search for the metadata that match the user’s metadata query.

3.2.2 Application Infrastructure

The key iTrust methods reside in the application infrastructure; indeed,

all of the node- and resource-related functions exist in this component. The

infrastructure is divided into three parts: metadata-related functions, node-

and resource-related functions, and Java jar files. All parts interact with the

Web server foundation, whereas only some functions are exposed to the public

interface component.

The creation and distribution of metadata, both internal and inter-node,

are handled by the metadata-related functions. A node generates metadata

from existing resources by invoking the metadata XML engine, which exhaus-

tively scans all resources and creates an XML list describing the relationship

between the metadata and the resource. Other metadata-related functions

deal with the distribution of the XML list to other nodes, or with the receipt

of XML lists distributed by other nodes. In the latter case, the received XML
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lists are scanned, and the metadata are inserted into the current node. In this

way, the metadata are replicated among participating nodes.

Node- and resource-related functions, also known as helper functions, deal

with bookkeeping tasks. These functions include functions that insert nodes

into the membership, insert keywords into the database, and upload or fetch

resources. Resources can be tagged with metadata manually by the user,

or they can be automatically scanned for metadata, depending on the user’s

preferences. Node querying and query relaying are also handled by the helper

functions (mostly through the use of PECL HTTP). All user variables (per

session) and global administrative variables are stored.

Java jar files are used to generate metadata quickly and easily, and to

provide the user with many conveniences. Apache’s Tika and Lucene packages

are used to generate metadata from resources automatically and efficiently,

in the case where the user chooses not to generate metadata manually. The

WordNet dictionary is used to provide the user with functions, such as spell

checking and synonym suggestions.

3.2.3 Public Interface

The public interface, through which the users and the system administra-

tor interact with iTrust, is divided between human and computer interfaces.

Computer interfaces (dark boxes on the right in Figure 3.4) handle all inter-

node communication such as queries, resource distribution, and metadata list
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distribution. All of the other interfaces (clear boxes on the right in Figure 3.4)

are human-oriented and consist of PHP driven HTML Web pages; in fact, all

human interaction with iTrust is through Web pages.

Administration is performed through the tools Web pages and other Web

pages. Tools allow an administrator to add nodes or metadata keywords using

simple HTML form text boxes. Adding resources requires uploading a file

(form file input) or providing a URL (form text box input). User settings

and statistics Web pages provide feedback to the administrator about the

membership size, resource count, etc. An administrator may generate and

distribute metadata XML lists or update the participating nodes’ metadata

lists. An administrator may also request that a node be removed from a node’s

membership. In this case, the request is activated through a human interface,

and the request is distributed through the iTrust network using computer

interfaces.

The most used feature of iTrust is the human interface for searching, where

a user can enter a search query to request a resource. The query is sent from

the current node to participating nodes using computer interfaces in a simple

inbox-type fashion. Participating nodes read their inbox for queries, send back

a response if there is a match, and independently decide whether to relay the

query.
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3.3 User Interface of iTrust

The iTrust user interface is a Web-based interface where the user can both

administer and query the nodes through Web pages. Query results from mul-

tiple nodes are presented in a single Web page following a query. Node admin-

istration and user queries are separated into distinct Web pages to keep tasks

distinct and easily manageable.

3.3.1 Node Administration

The user may change the membership, add source nodes, distribute meta-

data, and perform other administration tasks through the administration in-

terface shown in Figure 3.5.

A node is added to the membership by entering the node IP address or URL

on a comma-delimited list inside an HTML form text box. Double listing is

not permitted; duplicates are removed from the list. However, multiple nodes

are permitted as long as the Web site document root is distinct (e.g., both

www.example.com/foo and www.example.com/bar are allowed).

Figure 3.6 shows the resource insertion Web page. A resource is added

to a node by means of an HTML form file control; this control permits the

user to upload a file from his/her local machine. Alternately, a Web site URL

can be specified, and the node then fetches the contents at that URL. The

uploaded contents are post-processed, using the Apache Tika/Lucene package,
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Figure 3.5: The Administration Interface.

to generate descriptive metadata (i.e., keywords) automatically. The user may

customize several parameters for metadata creation, including indexing by file

raw content (literal text strings) or file meta content (file size, type, etc.). In

addition to automatic metadata creation for an uploaded resource, the user

may add new keywords or remove existing keywords. Finally, the user may

assign an expiration date to the resource.

Administration tasks also include file administration functions to allow the

user to setup, restore, or reset iTrust nodes easily. Clearing the membership,

deleting all resources and metadata associations, and resetting a node to its

initial setup state can all be done with a single button click. The task of
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Figure 3.6: The Insert Resource Web page.

pushing all metadata changes to random nodes is also accomplished with a

single button click.

3.3.2 User Queries

The user may perform queries, view the query results, and obtain resources

through the user interface.

Querying is done through a single HTML form text box, whereupon the

query is registered on the node and distributed throughout the iTrust network.

The user is shown a status/wait Web page while the query is relayed among

nodes; a result Web page is shown after a wait page timeout. The default
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Figure 3.7: The Query Results Web page.

timeout is 3 seconds and, thus, a query incurs a 3 second latency between

initialization of the query and display of the query results. However, the wait

page timeout is also configurable by the node administrator.

Figure 3.7 shows the query results displayed on a new Web page (the wait

page automatically redirects to the new page) in a simple HTML list. Each

encounter is shown as a list item with the source address and resource handle

encoded into a single URL.

The user may click the URL to retrieve the resource file; the format of the

file is the originally uploaded format (there is no MIME-type modification).
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Figure 3.8: The user settings Web page.

If the Web browser recognizes the file type, it handles the data accordingly;

otherwise, it calls the operating system to open the data file.

3.3.3 User Settings

Figure 3.8 shows the user settings Web page. For querying, the three

primary user settings (which the user sets on the user settings page) are the

number of nodes to which the metadata are distributed, the number of nodes

to which the requests are distributed, and the search duration.

The number of nodes to which the metadata are distributed and the number

of nodes to which the requests are distributed must, of course, be less than

the number of participating nodes in the membership.
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The search duration refers to the lifetime that a search query exists. The

user may specify how many days a query will be stored in the database. When

a user initiates a query, the system adds its creation time to the database.

Later, when the user initiates a new query, the system checks and deletes

expired queries from the database.

These user settings apply to the entire duration of a search session. The

search session starts when a user accesses the search Web page and ends when

the user exits the browser window or tab. The PHP session functions are used

to automate this process.

3.4 Performance Evaluation of iTrust

3.4.1 Foundations

Assumptions and Notation

In the iTrust network, all of the requests are distributed and processed

concurrently. We assume that the nodes have enough memory to store the

source files, as well as the metadata that are generated and received, and that

messages are delivered reliably (the iTrust implementation is based on HTTP

and, thus, TCP).

We assume that all of the participating nodes in the iTrust network have

the same membership set. However, some of the nodes in the iTrust network
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might be unavailable, and some of the nodes might behave maliciously, i.e.,

might not respond to a request when there is a match.

The primary parameters determining the performance of the iTrust net-

work are:

• n: The number of participating nodes (i.e., the size of the membership

set)

• m: The number of participating nodes to which the metadata are dis-

tributed

• r: The number of participating nodes to which the requests are dis-

tributed

• x: The proportion of participating nodes that are operational (i.e., 1−x

is the proportion of participating nodes that are non-operational)

• K: The upper bound on the number k of responses to a request.

Analytical Model

The analytical model for the iTrust network is the hypergeometric distri-

bution [32], which describes the number of successes in a sequence of random

draws from a finite population without replacement. More specifically, in
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Figure 3.9: Method for calculating the analytical probabilities P (k) of spe-
cific numbers of matches.

iTrust, the analytical probability of k matches is given by:
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for mx+ r ≤ n and k ≤ min{mx, r}.

Pseudocode for calculating the analytical probabilities from Equation (3.1)

is given in Figure 3.9.

From Equation (3.1), the probability P (0) of no matches on any of the r

trials is given by:

P (0) =
(n−mx

r
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r−1
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1
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n
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where mx+ r ≤ n.

From Equation (3.2), the probability P (k ≥ 1) of one or more matches is

given by:

P (k ≥ 1) = 1− P (0) (3.3)

= 1− n−mx

n

n−mx− 1

n− 1
. . .

n−mx+ 1− r

n− r + 1

41



Chapter 3. Trustworthy Distributed Search and Retrieval

Figure 3.10: The probabilities of one or more matches as the number of
nodes to which the metadata and the requests are distributed increases, for
different proportions of operational nodes.

where mx+ r ≤ n.

The iTrust implementation handles requests with responses that return

different URLs. However, Equation (3.3) applies to a single source node and

a single requesting node. Consequently, the iTrust implementation and algo-

rithms handle the matches for each URL separately.

Figure 3.10 shows the probabilities of a match for an iTrust membership

with n = 1000 participating nodes, obtained from Equation (3.3), when a

proportion of the nodes are non-operational. The figure shows the probability

of a match as the number of nodes to which the metadata and the requests

are distributed increases when a proportion x = 1.0, 0.7, 0.4, 0.2 of the partic-

ipating nodes are operational. As the figure shows, iTrust retains significant

42



Chapter 3. Trustworthy Distributed Search and Retrieval

utility in circumstances in which a substantial proportion of the nodes are

non-operational, which might be the circumstances in which the information

is most needed.

3.4.2 Emulation of iTrust

Using our implementation of iTrust described in Section 3.2, we performed

experiments to validate Equation (3.1). In our emulation of iTrust, we used

libCURL (which is a free client-side URL transfer library for transferring data

using various protocols) to collect the match probabilities.

Before we run our program, we provide the following input to the program:

the number n of nodes in the membership, the numberm of nodes for metadata

distribution, the number r of nodes for request distribution, and the proportion

x of operational nodes.

First, the program clears the data from the SQLite databases. Next, the

program adds the nodes to the membership. Once all of the nodes are added

to the membership, we call the source node to upload a file and the program

then creates the corresponding metadata. Then, the program randomly selects

nodes for metadata distribution, and distributes the metadata to those nodes.

Next, the program randomly selects the nodes for request distribution, and

distributes the requests to those nodes. Then, the program waits for 5 seconds.

If one or more nodes has replied back to the program, it means that there is
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a match and the program returns 1; otherwise, there is no match and the

program returns 0.

We repeat the same process 100 times for the source nodes and correspond-

ingly for the requesting nodes, and plot the mean results in our graphs. We

collected data for 36, 72 and 144 participating nodes, when all of the nodes are

operational. We also collected data for 144 participating nodes when 100%,

80% and 60% of the nodes are operational.

3.4.3 Performance Evaluation Results

First, we consider the analytical and emulation results for the probability

of a match, as the number of participating nodes increases. Then, we consider

the analytical and emulation results for the probability of a match, as the

proportion of non-operational nodes increases.

Increasing the number of participating nodes

Figures 3.11, 3.12 and 3.13 show both the analytical results and the emu-

lation results for 36, 72 and 144 participating nodes, all of which are opera-

tional. The analytical curves obtained from Equation (3.3) are shown in the

background (light curves), and the emulation curves obtained from our iTrust

implementation are shown in the foreground (dark curves). We see from these

figures that the emulation results are very close to the analytical results.
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Figure 3.11: Match probability vs. number of nodes for distribution
of metadata and requests with 36 participating nodes, all of which are
operational.

Figure 3.12: Match probability vs. number of nodes for distribution
of metadata and requests with 72 participating nodes, all of which are
operational.

Figure 3.13: Match probability vs. number of nodes for distribution
of metadata and requests with 144 participating nodes, all of which are
operational.
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Figure 3.11 shows the match probability versus the number of nodes for

distribution of metadata and requests in a network when 100% of the 36 nodes

are operational. From the figure, we see that the probability increases as the

number of nodes to which the metadata and requests are distributed increases.

The reason is that the more nodes to which the metadata and requests are

distributed, the more matches there are.

When the membership contains more nodes, the match probability asymp-

totically approaches 1 more slowly than for a membership with fewer nodes.

That is, if we distribute the metadata and the requests to the same number of

nodes, but the membership contains more nodes, the probability of a match

is less than that for a membership with fewer nodes.

When we increase the membership to 72 nodes in Figure 3.12, the curves

approach 1 more slowly than do the curves in Figure 3.11 for a membership

containing 36 nodes. In other words, as we increase the membership, we must

distribute the metadata and the requests to more nodes to obtain a higher

match probability. Similarly, in Figure 3.13, when we increase the membership

to 144 nodes, we see that the curves grow even more slowly than do the curves

in the 36 node and 72 node networks.

Suppose now, for example, that we want to achieve a 0.98 match probabil-

ity, in these three cases, which involve 36, 72 and 144 nodes all of which are

operational. In the 36 node network, we need to distribute the metadata and

the requests to only 10 nodes to achieve a 0.98 match probability. However, in
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the 72 node network, we need to distribute the metadata and the requests to

15 nodes to achieve a 0.98 match probability, whereas in the 144 node network,

we need to distribute the metadata and the requests to 22 nodes to achieve a

0.98 match probability.

Thus, when we distribute the metadata and the requests to only a few

nodes, the match probability is lower and the requester is unlikely to receive

multiple responses from multiple matching nodes. When we distribute the

metadata and the requests to more nodes, the match probability is higher

and the requester will more likely receive multiple responses from multiple

matching nodes. For a network with more participating nodes, the match

probability grows more slowly than the match probability for a network with

fewer participating nodes.

Increasing the number of non-operational nodes

Figures 3.14, 3.15 and 3.16 show both the analytical results and the em-

ulation results for 144 nodes, when 100%, 80% and 60% of the participating

nodes are operational, i.e., when 0%, 20% and 40% of the participating nodes

are non-operational. The analytical curves obtained from Equation (3.3) are

shown in the background (light curves), and the emulation curves obtained

from our iTrust implementation are shown in the foreground (dark curves).

Again, we see from these figures that the emulation results are very close to

the analytical results.
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Figure 3.14: Match probability vs. number of nodes for distribution of
metadata and requests with 144 participating nodes where 100% of the nodes
are operational.

Figure 3.15: Match probability vs. number of nodes for distribution of
metadata and requests with 144 participating nodes where 80% of the nodes
are operational.

Figure 3.16: Match probability vs. number of nodes for distribution of
metadata and requests with 144 participating nodes where 60% of the nodes
are operational.
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In Figures 3.14, 3.15 and 3.16, we see that the match probability curves

increase as the number of nodes for distribution of metadata and requests

increases. However, if we compare Figure 3.14 with Figure 3.15, we notice

that the curves in Figure 3.14 asymptotically approach 1 faster than the curves

in Figure 3.15. The reason is that in Figure 3.14 every node is operational,

whereas in Figure 3.15 only 80% of the nodes are operational. Therefore,

for distribution of metadata and requests to the same number of nodes, the

probability of a match in Figure 3.14 is generally higher than it is Figure 3.15.

Similarly, in Figure 3.16, where only 60% of the nodes are operational, the

curves asymptotically approach 1 more slowly than the curves in Figures 3.14

and 3.15.

Suppose now, for example, that the metadata and the requests are dis-

tributed to 20 nodes in these three cases, all of which involve 144 nodes. If

100% of the 144 nodes are operational, the probability of a match is 0.96. But

if 80% of the 144 nodes are operational, the probability of a match is 0.92,

whereas if 60% of the 144 nodes are operational, the probability of a match is

is 0.85, which is still quite good.

Thus, when all of the participating nodes are operational, the match prob-

ability is higher and the requester will likely receive multiple responses from

multiple matching nodes. When there are fewer operational nodes, the match

probability is lower and the requester is less likely to receive multiple responses

from multiple matching nodes. Consequently, we must distribute the meta-
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data and the requests to more nodes as the number of non-operational nodes

increases, to obtain higher match probabilities. Nonetheless, iTrust retains sig-

nificant utility even when not all of the nodes are operational, demonstrating

that iTrust is quite robust.

3.5 Summary

We have described iTrust, a novel information publication, search and

retrieval system with no centralized mechanisms and no centralized control.

iTrust involves distribution of metadata and request (queries) containing key-

words, matching of keywords and metadata, and retrieval of information corre-

sponding to the metadata. We have shown that with iTrust, the probability of

matching a query is high even if some of the participating nodes are subverted

or non-operational. The iTrust system is particularly valuable for individuals

who wish to share information, without having to worry about subversion or

censorship of information.
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Protecting against Malicious

Attacks in iTrust

The decentralized and distributed nature of iTrust makes it robust against

malicious attacks that aim to prevent access to published information. One

specific kind of malicious attack, addressed in this chapter, is to insert into

the network a large number of nodes that behave normally except that they

do not return responses, if they have a match. The appropriate reaction to

such an attack is to increase the number of nodes to which the requests are

distributed, thus restoring the probability of a match to the desired level.

Effective use of iTrust depends on information about the network that

might not be easy to obtain, such as the size of the iTrust network. Even

more difficult to obtain is information about uncooperative or malicious nodes

that might deliberately attempt to conceal information about sensitive topics

by failing to report matches for requests related to those topics. The absence

of centralized control makes it difficult to determine such information. This
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problem is not unique to iTrust; other peer-to-peer, ad-hoc, and dynamic

networks face similar problems [33, 56, 75, 80].

In iTrust, we deal with non-operational nodes that have crashed or that

have become disconnected. We also deal with malicious nodes that appear to

behave normally, except that they do not match requests related to sensitive

topics. Here, malice is represented not by explicit overt bad behavior but

rather, by selective silence, where such silence would be correct behavior if the

node did not hold metadata that matches the request.

Other researchers have developed techniques to cope with overt malicious

behavior [52] and to cope with selfish nodes that do not respond in order to

lighten their workloads [45]. In iTrust, we associate absence of action with the

intent to censor sensitive information, when absence of action is a permissible

behavior if the node does not hold metadata for that information. As far as we

are aware, iTrust is the first system that infers that nodes are not responding

in order to conceal sensitive information.

The novelty of this work is the use of a statistical method, together with an

analytical model, to infer characteristics of the network that are not measur-

able directly. In iTrust, the nodes infer useful but unobservable information

about the network by observing aspects of the behaviors of the nodes that

are visible to them. More specifically, the nodes infer such information by

monitoring the responses to their requests.
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Often, a request results in multiple responses. The multiple responses do

not constitute waste. Rather, they provide valuable information about the

network, information that is difficult to obtain directly from the nodes. In

particular, the multiple responses allow a node to estimate the proportion of

non-operational or subverted nodes. The presence of non-operational or sub-

verted nodes reduces the number of responses received for a request. Having

detected a reduction in the number of responses, a node can then adaptively

increase the number of nodes to which it distributes a request, to maintain a

high probability of a match.

In this chapter, we describe this novel statistical inference technique for

iTrust, which can also be applied to other networks such as [33, 56, 75, 80].

More specifically, we present novel statistical algorithms for detecting and

defending against malicious attacks in the iTrust network, including:

• A detection algorithm that detects changes in the proportion of opera-

tional nodes, rejecting changes due to random fluctuations

• A defensive adaptation algorithm that changes the number of nodes to

which the requests are distributed, thus compensating for changes in the

proportion of operational nodes and maintaining a high probability of a

match.

The detection and defensive adaptation algorithms utilize the exponential

weighted moving average method to collect the observational data, from which
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a requesting node determines the empirical probabilities of the numbers of

responses received for its requests. The node then employs the chi-squared

test to compare the empirical probabilities against the analytical (expected)

probabilities, in order to estimate the proportion of operational nodes in the

iTrust network. The node then increases or decreases the number of nodes to

which it sends its requests, in order to maintain the same high probability of

a match as when all of the nodes in the network are operational.

By design and by choice of appropriate parameters for the detection and

defensive adaptation algorithms, we aim to achieve good performance, in par-

ticular:

• High probability of a match, despite changing network conditions

• High accuracy in estimating the proportion of operational nodes

• Low response time in detecting a change in the proportion of operational

nodes.

4.1 Foundations

4.1.1 Assumptions and Notation

The primary parameters determining the performance of the iTrust net-

work are:

54



Chapter 4. Protecting against Malicious Attacks in iTrust

• n: The number of participating nodes (i.e., the size of the membership

set)

• m: The number of participating nodes to which the metadata are dis-

tributed

• r: The number of participating nodes to which the requests are dis-

tributed

• x: The proportion of participating nodes that are operational (i.e., 1−x

is the proportion of participating nodes that are non-operational)

• K: The upper bound on the number k of responses to a request.

Our algorithm for detecting malicious attacks employs the method in Fig-

ure 3.9 for calculating the analytical probabilities, which it uses to estimate

the proportion of nodes that are operational and, thus, the proportion of nodes

that are non-operational or subverted.

Our algorithm for defending against malicious attacks uses Equation (3.3)

to determine the amount by which to increase the number of nodes to which

the requests are distributed, in order to compensate for an increase in the

proportion of subverted or non-operational nodes. Simplistically, if only one-

half of the nodes are non-operational, a requesting node needs to distribute

its request to twice as many nodes. More precisely, these numbers are affected

by the size of the membership set. In Sections 4.2, 4.3 and 4.4, we provide the

more refined algorithms.
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norm(P,K)

1 S ← 0

2 for i← 1 to K

3 S ← S + P (i)

4 for k ← 1 to K

5 Q(k)← P (k)
S

6 return Q

Figure 4.1: Method for normalizing the probabilities.

4.1.2 Normalization

In our experiments and in real-world deployments, we cannot use requests

that return k = 0 responses, because zero responses can arise not only when

the metadata and the requests are distributed to disjoint subsets of nodes, but

also when there exists no metadata that matches a request. Thus, we exclude

requests that return k = 0 responses. Moreover, for large values of k, the

probability of k matches is negligibly small, so we also exclude those requests.

That is, we determine a value K and exclude requests that return k responses

for k > K. We then normalize the probabilities P (k), 1 ≤ k ≤ K.

To find the normalized probabilities Q(k), 1 ≤ k ≤ K, we perform the

following calculation:

Q(k) =
P (k)

∑

K

i=1 P (i)
(4.1)

Pseudocode for normalizing the probabilities is given in Figure 4.1.

We apply the normalization method given in Figure 4.1 to both the analyti-

cal probabilities and the observed probabilities before applying the chi-squared

test, as described in Section 4.2.
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4.1.3 Evaluation Metrics

For the evaluation of the detection and defensive adaptation algorithms

in estimating the proportion x′ of operational nodes, we employ the following

metrics:

• Match probability: The probability that a request results in one or more

matches

• Accuracy: The number of correct estimates of x′ divided by the total

number of estimates of x′ within an interval of requests

• Response time: After a change in the actual proportion x of operational

nodes, the number of requests before the algorithm changes the value of

x′.

Ideally, the match probability and the accuracy are high and the response

time is low. The defensive adaptation algorithm depends on a high accuracy

value to maintain a high match probability. However, there are trade-offs

between the accuracy and the response time, which we discuss in subsequent

sections.

4.1.4 Ranges for the Evaluation

Initially, in our experiments, we consider two consecutive ranges: RangeA

and RangeB. In RangeA x = 1.0, and in RangeB x = 0.7, as shown in Figure
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Figure 4.2: The two ranges, each containing 1000 requests that produce 1000
samples, for a total of 2000 samples.

4.2. We consider 1000 requests in RangeA, and 1000 requests in RangeB, for

a total of 2000 samples in these experiments.

To calculate the accuracy, our program uses a counter to keep track of the

number of correct estimates of x′ in both RangeA and RangeB. The program

ends when it reaches 2000 requests, and then reports the number of correct

estimates. It then calculates the accuracy by dividing the number of correct

estimates by the total number of samples (which is 2000 in these experiments).

We repeat these steps 1000 times and then average the results to obtain the

mean accuracy. In the experiments, we repeat the process but with RangeB

set to x = 0.4, and then to x = 0.2.

To calculate the response time, our program calculates the number of re-

quests from the start of RangeB to the point at which the program detects a

change in the value of x′. We repeat these steps 1000 times and then average

the results to obtain the mean response time in terms of the number R of

requests. Then, we repeat the process but with RangeB set to x = 0.4, and

then to x = 0.2.
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The response time, in seconds, depends on the time interval between re-

quests, i.e., the time between issuing a request and obtaining the responses for

that request plus the think time. If it takes S seconds between each request,

then the response time in seconds is S ∗ R seconds. More frequent requests

(i.e., smaller values of S) yield a smaller response time. However, if the num-

ber of participating nodes is large, frequent requests might overload the iTrust

network.

4.2 Detecting Malicious Attacks

The novel algorithm for detecting unobservable malicious attacks in the

iTrust network estimates the proportion of operational nodes and, thus, the

proportion of non-operational or subverted nodes.

For given values of n, m and r, the detection algorithm computes the ana-

lytical (expected) probabilities for the number k of matches for various values

of x, such as x = 1.0, 0.7, 0.4, and 0.2, for the hypergeometric distribution

given by Equation (3.1). These values of x enable the algorithm to discriminate

the curves better and to estimate values of the proportion x′ of operational

nodes, that yield significant changes in the number r′ of nodes to which the

requests are distributed.
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chiSquared(Oi, Ex, K)

1 χ2 ← 0

2 for k ← 1 to K

3 χ2 ← χ2 + (Oi(k)−Ex(k))2

Ex(k)

4 return χ2

Figure 4.3: Chi-squared method.

4.2.1 Chi-Squared Test and Modified Chi-Squared Test

The detection algorithm uses Pearson’s chi-squared goodness-of-fit test

[40] to compare the normalized analytical probabilities and the normalized

observed probabilities for different values of x, given by Equation (3.1) for

the hypergeometric distribution. This test determines which of the analytical

curves best matches the observed probabilities of a match. The chi-squared

statistic is given by:

χ2 =
K
∑

k=1

(ok − ek)
2

ek
(4.2)

where:

• ok: The actual number of observations that fall into the kth bucket

• ek: The expected number of observations for the kth bucket

• K: The number of buckets into which the observations fall.

Pseudocode for the chi-squared method is given in Figure 4.3.
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In addition to the chi-squared statistic, we also investigate the modified

chi-squared statistic [68] defined by:

χ2 =
K
∑

k=1

(K1ok −K2ek)
2

ok + ek
(4.3)

where:

• ok: The actual number of observations that fall into the kth bucket

• ek: The expected number of observations for the kth bucket

• K: The number of buckets into which the observations fall

• K1 and K2: The scaling constants defined by:

K1 =

√

∑

K

k=1 ek
∑

K

k=1 ok
and K2 =

√

∑

K

k=1 ok
∑

K

k=1 ek
(4.4)

Because we normalize the probabilities (both those obtained from observa-

tion and those obtained from Equation (3.1)) before we apply the chi-squared

statistic, both
∑

K

k=1 ok and
∑

K

k=1 ek equal 1, which means that K1 = 1 and

K2 = 1. Thus, in our case, the modified chi-squared statistic is:

χ2 =
K
∑

k=1

(ok − ek)
2

ok + ek
(4.5)

The only difference between the chi-squared statistic and the modified chi-

squared statistic is the denominator. Note that from [68] (p. 616), the denom-

inator in Equation (4.5) should not be the average of ok+ ek but the sum, i.e.,

twice the average.

Pseudocode for the modified chi-squared method is given in Figure 4.4.
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modifiedChiSquared(Oi, Ex, K)

1 χ2 ← 0

2 for k ← 1 to K

3 χ2 ← χ2 + (Oi(k)−Ex(k))2

Oi(k)+Ex(k)

4 return χ2

Figure 4.4: Modified chi-squared method.

We apply the chi-squared method given in Figure 4.3 and the modified chi-

squared method given in Figure 4.4 to the detection algorithm for estimating

the proportion of operational nodes in the iTrust network.

4.2.2 Detection Algorithm

The detection algorithm collects statistical data on the number of responses

that a requesting node receives for its requests, using the exponential weighted

moving average method, described in Section 4.4.1. Then, it calculates the

empirical probabilities from the statistical data. The algorithm excludes zero

matches, because it cannot distinguish the case in which no node holds the

metadata and the case in which no node holds both the metadata and the

request.

Using the chi-squared test or the modified chi-squared test, the detection al-

gorithm compares the normalized observed probabilities Oi(k) and the normal-

ized expected probabilities Ex(k) for the number of matches obtained from the

analytical model in Section 3.4.1, for k = 1, 2, ..., K and x = 1.0, 0.7, 0.4, 0.2.

It then chooses, as the observed proportion of operational nodes, the value of
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Figure 4.5: The normalized expected probabilities E1.0, E0.7, E0.4, E0.2 of
the number k of matches for various proportions x of operational nodes. The
error bars show the ranges within which the normalized observed probabilities
occur.

x′ (x′ = 1.0, 0.7, 0.4, 0.2) for which the chi-squared value is the smallest. This

value of x′ is the algorithm’s best estimate of the proportion of operational

nodes, and corresponds to the curve with the best fit.

For n = 1000 and m = r = 60, Figure 4.5 shows the normalized ex-

pected probabilities E1.0, E0.7, E0.4, E0.2 of the number of matches for x =

1.0, 0.7, 0.4, 0.2 operational nodes, derived from the hypergeometric distribu-

tion given by Equation (3.1). As the figure shows, many of the requests result

in multiple responses. The multiple responses are used to estimate the propor-

tion of operational nodes in the iTrust network. The figure also shows error

bars for the probabilities of the numbers of matches, derived from observations

63



Chapter 4. Protecting against Malicious Attacks in iTrust

of 500 batches with 40 requests in each batch. As the figure shows, there is

considerable variability, and some overlap between the curves for the various

values of x. Nonetheless, the chi-squared method provides good discrimination

between the curves.

The parameters of the detection algorithm are:

• s: The number of requests for which samples are accumulated before the

detection algorithm calculates χ2 and estimates the value of x′

• t: The number of successive estimates by the chi-squared test that indi-

cate the same change in the value of x′ before the detection algorithm

accepts that change and the defensive adaptation algorithm takes action

to change the value of r′

• K: The upper bound on the number of buckets used for the responses

to a request.

For the request accumulation s, if the algorithm evaluates χ2 immediately

after obtaining a new sample, the computational and memory costs are greater.

However, if the algorithm waits too long to evaluate χ2, the response time for

detecting a change in x′ is greater. Therefore, we seek to determine a value of

s that balances these two extremes.

For the estimate confirmation t, a smaller value of t results in a “hair

trigger” algorithm that responds more quickly to changes, but that makes
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more mistakes. A larger value of t results in a more conservative algorithm

that responds more slowly to change.

4.2.3 Determining Appropriate Values of s and t

For the chi-squared statistic, we consider three different values of s (s =

1, 5, 10), and three different values of t (t = 1, 2, 3).

For s = 1, the algorithm evaluates χ2 each time it obtains a new sample.

For s = 5, it evaluates χ2 after the 5th new sample, rather than immediately.

For s = 10, it evaluates χ2 after the 10th new sample, rather than immediately.

For t = 1, the algorithm detects a change in the value of x′ and takes

action immediately. For t = 2, the algorithm takes action when it detects the

same change in the value of x′ in two consecutive estimates. For t = 3, the

algorithm takes action when it detects the same change in the value of x′ in

three consecutive estimates.

We found the mean accuracy and the mean response time for the detection

algorithm when action is taken immediately (s = 1 and t = 1) and when action

is delayed (s = 5 or 10 and t = 2 or 3). The values of the other parameters

for these experiments are n = 1000, m = 60, r = 60, c = 0.97, d = 40,

and K = 60. Here, c is the weighting factor for the exponential weighted

moving average method described in Section 4.4, where we determine that

c = 0.97 is an appropriate value for the weighting factor. We performed each

experiment for RangeA with x = 1.0 and RangeB with x = 0.7, 0.4, and 0.2.
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s=1 1 2 3
Mean Accuracy
x =1.0, 0.7 0.9240 0.9241 0.9246
x = 1.0, 0.4 0.9074 0.9081 0.9091
x = 1.0, 0.2 0.8789 0.8792 0.8794
Mean Response Time
x =1.0, 0.7 32.1 34.5 40.8
x = 1.0, 0.4 69.5 72.4 74.0
x = 1.0, 0.2 148.7 149.7 150.7

s=5 1 2 3
Mean Accuracy
x =1.0, 0.7 0.9216 0.9319 0.9380
x = 1.0, 0.4 0.9069 0.9120 0.9170
x = 1.0, 0.2 0.8784 0.8828 0.8855
Mean Response Time
x =1.0, 0.7 36.0 47.0 56.5
x = 1.0, 0.4 75.0 90.0 100.0
x = 1.0, 0.2 150.5 156.5 161.5

s=10 1 2 3
Mean Accuracy
x =1.0, 0.7 0.9216 0.9353 0.9426
x = 1.0, 0.4 0.8975 0.9077 0.9148
x = 1.0, 0.2 0.8779 0.8843 0.8887
Mean Response Time
x =1.0, 0.7 45.0 67.0 80.0
x = 1.0, 0.4 83.0 99.0 122.0
x = 1.0, 0.2 153.0 163.0 173.0

Table 4.1: Mean accuracy and the mean response time for s = 1, 5, 10.

66



Chapter 4. Protecting against Malicious Attacks in iTrust

We performed each experiment 1000 times and then averaged the results to

obtain the mean accuracy and the mean response time.

Table 4.1 shows the mean accuracy and the mean response time for s = 1, 5,

and 10, respectively. The table shows a useful increase in the mean accuracy as

s is increased from 1 to 5, but a smaller increase in the accuracy as s is further

increased to 10. For the mean response time, increasing s from 1 to 5 causes

a relatively small increase in the response time, whereas a further increase in

s causes a larger response time. The improvements in the accuracy are more

substantial when t = 2, than when t = 1, but the increase in the response

time is still reasonable. Consequently, we chose s = 5 for our experiments,

and investigate the effects of different values of t further in Section 4.2.4.

4.2.4 Determining an Appropriate Value of K

Next, we consider the number K of buckets used by the detection algo-

rithm for the chi-squared statistic. In our previous experiments for n = 1000,

r = 60, and m = 60, we set K = 60. However, for k > 6, the analytical proba-

bilities P (k) become small and, for k > 15, they become negligible. Thus, we

investigate the two cases K = 6 and K = 15. In the detection algorithm, we

only consider requests with k responses, 1 ≤ k ≤ K.

The top of Figure 4.6 shows the mean accuracy, and the bottom of Figure

4.6 shows the mean response time for K = 60, 15, and 6 buckets. These
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Figure 4.6: Mean accuracy and mean response time for K buckets where
K = 60, 15, and 6 and t = 1, 2, and 3, where n = 1000, m = r = 60, c = 0.97,
d = 40, s = 5, RangeA with x = 1.0 and RangeB with x = 0.4.

graphs were produced using n = 1000, m = 60, r = 60, c = 0.97, d = 40,

s = 5, rangeA with x = 1.0, and rangeB with x = 0.4.

At the top of Figure 4.6, we see that the mean accuracy for K = 6 buckets

is less than the mean accuracy for K = 15 and K = 60 buckets for all three

values of t. Moreover, the accuracy values for K = 15 and K = 60 buckets

are quite close to each other for all three values of t.

At the bottom of Figure 4.6, we see that the mean response time for K = 6

buckets is less than the mean response times for K = 15 and K = 60 buckets
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for all three values of t. Moreover, the mean response time for K = 15 buckets

is slightly less than the mean response time for K = 60 buckets for all three

values of t.

Therefore, based on these results, we conclude that K = 15 buckets are

enough buckets to achieve high accuracy and low response time.

4.2.5 Chi-Squared Test vs. Modified Chi-Squared Test

One of the drawbacks of the chi-squared statistic is that sometimes it places

too much weight on some buckets, especially buckets with larger values of k in

the case of x = 0.2 or x = 0.4. In particular, the mean accuracy for x = 1.0 and

0.2 and for x = 1.0 and 0.4 are not that high compared to x = 1.0 and 0.7. For

example, for x = 0.2, the normalized expected probability for k = 4 matches is

E0.2(4) = 0.007. If the normalized observed probability is Oi(4) = 0, the small

value 0.007 does not contribute much to the chi-squared statistic, because it is

close to the expected value 0.007. But if Oi(4) = 0.0933, division by the small

value 0.007 in the chi-squared statistic places too much weight on bucket 4,

which affects the overall weights in the chi-squared statistic and, thus, results

in an incorrect estimate of x′.

Therefore, we also investigated the modified chi-squared statistic given by

(4.5. The values of the parameters for this experiment are n = 1000, m = 60,

r = 60, c = 0.97, d = 40, s = 5, t = 2, and K = 15.
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Figure 4.7: Chi-squared statistic vs. modified chi-squared statistic with
n = 1000, m = r = 60, c = 0.97, d = 40, s = 5, t = 2, and K = 15.

Figure 4.7 shows the mean accuracy for the chi-squared statistic and the

mean accuracy for the modified chi-squared statistic. As we see in the figure,

the chi-squared statistic has slightly higher accuracy for x = 1.0, but the

modified chi-squared statistic achieves higher accuracy for x = 0.7, x = 0.4,

and x = 0.2. Therefore, we used the modified chi-squared statistic in our

further experiments.

4.3 Defending against Malicious Attacks

Consider an iTrust network with n = 1000, m = 60, and x = 1.0 0.7,

0.4, 0.2, as shown in Figure 4.8. The defensive adaptation algorithm first

determines the value of y0 for the point on the x = 1.0 curve corresponding to

70



Chapter 4. Protecting against Malicious Attacks in iTrust

Figure 4.8: Based on the curves for P (k ≥ 1) for x = 1.0, 0.7, 0.4, 0.2,
increase or decrease the number of nodes to which the requests are distributed
to compensate for non-operational nodes to achieve the same probability of a
match as when all of the nodes are operational.

n = 1000 and m = r = 60. From Equation (3.3), it computes the probability

of one or more matches to obtain y0 = 0.978298 = P (k ≥ 1).

If the detection algorithm determines from empirical evidence that x′ =

0.7 then, from the calculated value of y0, the defensive adaptation algorithm

determines the value of r′ corresponding to y0 on the x = 0.7 curve. That

is, it iteratively solves the equation y0 = P ′(k ≥ 1) with n = 1000, m = 60,

x′ = 0.7, and r′ to obtain r′ = 86.

Similarly, if the detection algorithm determines from empirical evidence

that x′ = 0.4 or x′ = 0.2, the defensive adaptation algorithm determines

that r′ = 146 or r′ = 272, respectively. Figure 4.8 shows that for x′ = 0.7,

x′ = 0.4, and x′ = 0.2, the appropriate numbers of nodes to which to distribute
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a request to compensate for non-operational or subverted nodes are r′ = 86,

r′ = 146, and r′ = 272, respectively. These increases maintain approximately

constant the proportion of operational nodes that receive the node’s request.

For x = 1.0, the proportion is 0.063; for x = 0.7, the proportion is 0.0602; for

x = 0.4, the proportion is 0.0582; and for x = 0.2, the proportion is 0.0544.

4.3.1 Defensive Adaptation Algorithm

Thus, when the detection algorithm estimates that the number x′ of op-

erational nodes is less than 1.0, the defensive adaptation algorithm increases

the number r′ of nodes to which the requests are distributed, to achieve the

same probability of a match as when x′ = 1.0.

Pseudocode for the defensive adaptation algorithm is given in Figure 4.9.

4.4 Combining the Algorithms

4.4.1 Exponential Weighted Moving Average Method

The detection and defensive adaptation algorithms, described in this paper,

use the exponential weighted moving average (EWMA) method. The EWMA

method is used to average the unnormalized observed probabilities Pi(k) for

k matches over a sequence of requests, in order to smooth those probabilities

and reduce the noise inherent in the individual samples.
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getR(n, m, r, prevX, x′)

1 y0 ← 1− (n−m)
(n)

(n−m−1)
(n−1)

. . . (n−m−r+1)
(n−r+1)

2 r′ ← r

3 if prevX > x′ then

4 Repeat

5 r′ ← r′ + 1

6 y′ ← 1− (n−mx′)
(n)

(n−mx′
−1)

(n−1)
. . . (n−mx′

−r′+1)
(n−r′+1)

7 until y′ > y0
8 else if prevX < x′ then

9 Repeat

10 r′ ← r′ − 1

11 y′ ← 1− (n−mx′)
(n)

(n−mx′
−1)

(n−1)
. . . (n−mx′

−r′+1)
(n−r′+1)

12 until y′ < y0
13 return r′

Figure 4.9: Method for finding the value of r′ that maintains the same prob-
ability of a match when some of the nodes are non-operational as does the
value of r when all of the nodes are operational.

With the EWMA method, the requester issues requests, collects responses,

and computes the unnormalized observed probabilities Pi(k) dynamically using

a weighting factor c, as follows:

P0(k) = 0 for 1 ≤ k ≤ K

Pi(k) = 1 + cPi−1(k) if i > 0 and request i

results in k responses

Pi(j) = cPi−1(j) if i > 0, j 6= k and 1 ≤ j ≤ K

For example, for n = 1000, m = 60, r = 60, c = 0.97, K = 60 buckets,

and 7 requests, the requester might obtain 2, 3, 5, 4, 2, 4, 3 responses for those 7

requests. Using the EWMAmethod, we obtain the values of Pi(k), 1 ≤ k ≤ 60,

0 ≤ i ≤ 7, shown in Table 4.2.
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k = 1 2 3 4 5 6 . . . 60
i = 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0
2 0 0.97 1 0 0 0 0 0
3 0 0.9409 0.97 0 1 0 0 0
4 0 0.9127 0.9409 1 0.97 0 0 0
5 0 1.8853 0.9127 0.97 0.9409 0 0 0
6 0 1.8287 0.8853 1.9409 0.9127 0 0 0
7 0 1.7739 1.8587 1.8827 0.8853 0 0 0

Table 4.2: Unnormalized Observed Pi(k), 1 ≤ k ≤ 60, 0 ≤ i ≤ 7.

Pseudocode for the exponential weighted moving average method is given

in Figure 4.10.

For the exponential weighted moving average method, we investigate values

of the following parameters:

• c: The weighting factor used in the EWMA method

• d: The number of requests in the initial transient for the EWMAmethod,

i.e., the detection algorithm starts to estimate x′ after d samples.

Determining an Appropriate Value of c

For the exponential weighted moving average method, if the value of c is

too high, the accuracy will be high but the response time will also be high.

In contrast, if the value of c is too low, the response time will be low but the

accuracy will also be low.

Figure 4.11 shows the mean accuracy and the mean response time for

c = 0.91, c = 0.93, c = 0.95, c = 0.97, and c = 0.99. These results were
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EWMA(numResp,Pi,K,c)

1 for k ← 1 to K

2 if numResp = k then

3 Pi(k)← 1 + cPi−1(k)

4 else

5 Pi(k)← cPi−1(k)

6 return Pi

Figure 4.10: Exponential weighted moving average method to compute the
unnormalized observed probabilities Pi(k).

obtained using n = 1000, r = 60, m = 60, d = 40, s = 5, t = 2, K = 15,

RangeA with x = 1.0, and RangeB with x = 0.7, 0.4 and 0.2, using the

modified chi-squared statistic.

In the figure, we see that both the accuracy and the response time increase

as c increases to 0.97. The reason is that when c is larger, the program waits

longer to ensure that there is indeed a change in the value of x. We note

that when c = 0.97, the accuracy is relatively high for all three values of x

and that the accuracy decreases for c > 0.97. Moreover, we note that when

c = 0.97, the response time is relatively low for all three values of x and that

the response time increases sharply for c > 0.97. Thus, we determine that

c = 0.97 is an appropriate value of c for our experiments.

Although c = 0.97 might be an appropriate value of c for our experiments,

iTrust offers the user the option to choose a value of c for the particular net-

work environment. The experiments presented here are based on the HTTP

implementation of iTrust over the Internet. However, iTrust is also imple-

mented for SMS-capable mobile phones [62] and for Wi-Fi Direct-capable mo-
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Figure 4.11: Mean accuracy and mean response time for various values of c
with n = 1000, m = r = 60, d = 40, s = 5, t = 2, and K = 15.

bile phones [63]. In a mobile environment, the rate of change of the number of

participating nodes might be greater, the cost of sending or receiving messages

might be greater, and the rate of generating metadata or requests might be

different than the corresponding rate over the Internet. Furthermore, the cost

of smaller match probabilities might be viewed differently. Smaller values of

c provide faster reactions to changes, and a higher risk of making mistakes.

Consequently, different users, operating in different network environments with

different objectives, might choose different values of c, and iTrust allows them

to do so.
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Determining an Appropriate Value of d

For the exponential weighted moving average method, we also determine an

appropriate value of d, the number of requests in the initial transient before

the program starts to estimate the value of x′. The program compares the

value of x′ against the value of x, and records the value of d when x′ and x

are the same. The program repeats this process 500 times, and then averages

the values to obtain the mean value of d. We repeat this process for x = 0.7,

x = 0.4, and x = 0.2. From these experiments, we decided to set d = 40 to

make sure that the program waits long enough before it starts to estimate the

value of x′.

4.4.2 Combined Algorithms

Pseudocode for the combined detection and defensive adaptation algo-

rithms is given in Figure 4.12.

In line 1 to line 6, the variables are initialized. Line 7 starts an infinite

loop where, in Line 8, the index i for the EWMA method is incremented.

Within the infinite loop, in line 9, the algorithm checks whether the value

of x′ has changed. If so, in line 10, the algorithm changes the value of r′ based

on the new value of x′. In line 11 to line 18, the algorithm calculates the

normalized analytical (expected) probabilities E1.0, E0.7, E0.4, E0.2. In line 19,

the algorithm sets prevX to x′.
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combinedAlgorithms(n,m, r,K, c, d)

1 r′ ← r

2 x′ ← 1.0

3 prevX ← x′

4 for k ← 0 to K

5 P0(k)← 0

6 i← 0

7 while true do

8 i← i++

9 if prevX 6= x′ or i = 1 then

10 r′ ← getR(n,m, r′, prevX, x′)

11 P ← findP(n,m, r′, 1.0)

12 E1.0 ← norm(P,K)

13 P ← findP(n,m, r′, 0.7)

14 E0.7 ← norm(P,K)

15 P ← findP(n,m, r′, 0.4)

16 E0.4 ← norm(P,K)

17 P ← findP(n,m, r′, 0.2)

18 E0.2 ← norm(P,K)

19 prevX ← x′

20 numResp ← getRequest(r′)

21 Pi ← EWMA(numResp,Pi−1,K,c)

22 if i > d then

23 Oi ← norm(Pi, K)

24 χ2
1.0 ← chiSquared(Oi, E1.0, K)

25 χ2
0.7 ← chiSquared(Oi, E0.7, K)

26 χ2
0.4 ← chiSquared(Oi, E0.4, K)

27 χ2
0.2 ← chiSquared(Oi, E0.2, K)

28 x′ ← min(χ2
1.0, χ

2
0.7, χ

2
0.4, χ

2
0.2)

Figure 4.12: Combined algorithms.

In line 20, the node issues a request to r′ nodes selected at random. In

line 21, the algorithm invokes the EWMA method to calculate the current

unnormalized observed probability array Pi. In line 22, the algorithm checks

whether i is greater than the initial transient d during which it does not make
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estimates of x′. If so, in line 23, the algorithm normalizes the elements of the

array Pi to obtain the normalized observed probability array Oi. In line 24

to line 27, the algorithm calculates the chi-squared value for the normalized

observed probabilities Oi and the analytical (expected) probabilities E1.0, E0.7,

E0.4, E0.2. In line 28, the algorithm estimates the value of x′ based on the

smallest value of χ2 it obtained using the normalized observed probabilities Oi

and the normalized expected probabilities E1.0, E0.7, E0.4, E0.2.

Then, the algorithm goes back to line 7. If it finds in line 9 that the value

of x′ has changed, it gets a new value of r′ in line 10. These steps are repeated

indefinitely.

4.5 Experimental Evaluation

To evaluate the iTrust detection and defensive adaptation algorithms, we

used an emulation of iTrust based on the HTTP implementation of iTrust

described in Chapter 3.2. In the emulation, we have multiple virtual hosts

installed on a single Apache Web server, where each virtual host represents

a node in the iTrust network. Each node has a separate SQLite database

that resides on the Apache Web server, where it stores queries and resource

information.

Before we start the emulation program, we initialize the values of n, m,

r, and x. The program clears the node’s resources and databases, and then
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n 100 250 1000 2500 10000
m = r ≈ ⌈2√n ⌉ 20 30 60 100 200

Table 4.3: Number n of nodes and number m = r of nodes to which the
metadata and the requests are distributed.

adds the nodes to the membership set. For each source node, iTrust creates

the metadata for the document that the node wishes to share, and distributes

the metadata to m randomly selected nodes in the membership set. Then,

iTrust distributes requests to r randomly selected nodes in the membership

set. After waiting for five seconds, the emulation program records a sample,

i.e., the number of nodes that found a match and returned a response.

4.5.1 Number of Nodes

In the previous sections, we described the results we obtained for n = 1000

nodes. Now, we investigate whether the accuracy or the response time change

for different values of n. In addition, we investigate whether the value of c

should be changed for different values of n. We use the modified chi-squared

statistic in these experiments.

In particular, we investigate the following five values of n: n = 100, n =

250, n = 1000, n = 2500, and n = 10000. For each of these values of n, we set

m = r ≈ ⌈2√n ⌉ as shown in Table 4.3.

Figure 4.13 shows the mean accuracy and the mean response time for

c = 0.91, c = 0.93, c = 0.95, c = 0.97, and c = 0.99, as a function of the

number n of nodes. In these experiments, we use d = 40, s = 5, t = 2, and
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Figure 4.13: Mean accuracy and mean response time for various values of c
with d = 40, s = 5, t = 2, K = 15, RangeA with x = 1.0, and RangeB with
x = 0.7.

K = 15. We consider RangeA with x = 1.0 and RangeB with x = 0.7. We ran

the program 1000 times and averaged the results to obtain the mean accuracy

and the mean response time.

The results shown in the figure confirm the selection of c = 0.97 for all of

these values of n. Smaller values of c result in lower accuracy, whereas c = 0.99

results in higher response time. We repeated the experiment with RangeB set

to x = 0.4 and then x = 0.2, and the results were similar.

Figure 4.14 shows the mean accuracy and the mean response time for the

five different values of n (n = 100, 250, 1000, 2500, 10000) and for RangeA with

x = 1.0 and for RangeB with three different values of x (x = 0.7, 0.4, 0.2).
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Figure 4.14: Mean accuracy and mean response time for various values of x
with c = 0.97, d = 40, s = 5, t = 2, and K = 15.

From this figure, we see that the values of the accuracy for all of these

values of n and for all of these values of x are quite high. In addition, for a

given value of x, the response times are generally the same for all values of n.

The response time for RangeA with x = 1.0 and RangeB with x = 0.7 is the

smallest, followed by RangeB with x = 0.4, and then RangeB with x = 0.2.

Overall, the response times in all cases are within an acceptable range.

Lastly, based on the results shown in Figure 4.14, we note that for all

of these values of n, the accuracy and the response time are similar to the

previous results for n = 1000.
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Figure 4.15: Four graphs (x, x′, r′, p) for the detection and defensive adap-
tation algorithms, where x is the actual value of x for the iTrust network.
x′ is the estimated value calculated using the detection algorithm. r′ is the
number of nodes to which the requests are distributed calculated using the de-
fensive adaptation algorithm. p is the match probability for intervals between
a change in the value of x or a change in the value of x′.

4.5.2 Extended Scenario

Now we consider an extended scenario in which n = 1000,m = 60, c = 0.97,

d = 40, s = 5, t = 2, and K = 15 where, initially, r = 60 and x = 1.0. We use

the modified chi-squared statistic in these experiments.

In Figure 4.15, the graph at the top represents the actual value of x in

the iTrust network. The scenario starts with 550 requests where x = 1.0, and

then decreases to x = 0.7, decreases to x = 0.4, decreases to x = 0.2, increases
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to x = 0.4, increases to x = 0.7, and then finally increases to x = 1.0, with

another 550 requests for each increase or decrease in the value of x.

The second graph represents the estimated value of x′. The third graph

shows the change in the value of r′, corresponding to a change in the value

of x′. The fourth graph, at the bottom, shows the match probability p (i.e.,

the probability of one or more matches) for intervals between a change in the

value of x or a change in the value of x′.

First, we note that when the value of x decreases, there is a short interval

during which this change is not yet reflected in the value of x′. Therefore, the

match probabilities in this interval decrease, because the algorithm has not yet

increased r′. Similarly, when the value of x increases, there is a short interval

during which this change is not yet reflected in the value of x′. Therefore, the

match probabilities in this interval increase slightly.

Next, we observe that when the value of x′ is less than the value of x (as

at request 70), the value of r′ increases, resulting in the match probabilities

being slightly larger during this short interval. On the other hand, when the

value of x′ is greater than the value of x (as at request 2800), the value of r′

is less and the match probabilities are smaller during this short interval.

In addition, we note that the chance of incorrectly estimating the value

of x′ is quite small. Furthermore, we observe that the mean response time

and the mean time to recover from an incorrect estimate of x′ are quite small.
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In particular, the mean response time is about 38.33, and the mean time to

recover from an incorrect estimate of x′ is about 40.

Lastly, the graph at the bottom of the figure shows that the match prob-

abilities for the intervals are bounded by changes in the value of x or changes

in the value of x′. We see that most of the match probabilities are close to

the target value 0.978298 = P (k >= 1) calculated from Equation (3.3) with

n = 1000, m = 60, r = 60, and x = 1.0. Note the short intervals between a

change in the value of x and the subsequent change in the value of x′, and the

changes in the match probabilities in those intervals.

Overall, the experiments demonstrate that the detection algorithm is ef-

fective in detecting non-operational or subverted nodes, and that false alarms

rarely occur. Moreover, the defensive adaptation algorithm is effective in de-

fending against malicious attacks, because it adjusts the number of nodes to

which the requests are distributed to maintain a high probability of a match.

With appropriate choices of the parameters, the accuracy is high and the re-

sponse time is low.

4.6 Summary

In this chapter, we have presented novel statistical algorithms for detect-

ing and defending against malicious attacks in the iTrust information retrieval

network. The algorithms employ the exponential weighted moving average
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method and the chi-squared test to calculate the empirical probabilities for

the numbers of responses to a request. The detection algorithm compares the

normalized empirical probabilities against the normalized analytical probabil-

ities for the numbers of matches, to estimate the proportion of nodes that are

subverted or non-operational. The defensive adaptation algorithm increases

or decreases the number of nodes to which the requests are distributed, to

maintain a high probability of a match. Extensive experimental evaluations

demonstrate the effectiveness of the algorithms for detecting malicious attacks

and defending against them.
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Membership Management for

iTrust

In this chapter, we present adaptive and non-adaptive membership man-

agement protocols for the iTrust information retrieval network. The iTrust

membership consists of the nodes that participate in the iTrust network (also

referred to as the participating nodes). Each node has a local view of the

membership, which approximates the actual membership. Nodes can join the

membership at any time; likewise, nodes can leave the membership at any time,

either voluntarily or by crashing. A requesting node discovers a newly joined

node when it receives a response from a node that included that newly joined

node in its response. Likewise, a requesting node detects a non-operational

node by not receiving a response from that node before a timeout, or by re-

ceiving an error code from TCP.

An extensive literature on membership exists, but most of that work is not

relevant to iTrust. The membership protocols for iTrust are simpler and less
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costly than prior membership protocols [12], because iTrust does not need to

achieve an agreed accurate membership based on a consensus algorithm [9].

In this chapter, we compare the performance of the non-adaptive and adap-

tive membership protocols, with respect to membership accuracy, match prob-

ability, response time, and message cost, for various parameter values when

the membership churn is high and when the membership is stable.

5.1 iTrust Membership Protocols

The membership protocols for iTrust do not aim to achieve an agreed ac-

curate membership. Rather, they allow each member to have its own local

view of the membership, but aim to keep that local view close to the actual

membership. In this chapter, we present non-adaptive membership protocols

for iTrust, and adaptive membership protocols for iTrust that use the expo-

nential weighted moving average algorithm. We investigate the effectiveness

of the membership protocols when the membership has a lot of churn and also

when the membership is stable.

5.1.1 Joining the Membership

To join the membership, a node must first obtain the address of a boot-

strapping node. To obtain the address of the bootstrapping node, the node
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uses mechanisms outside the iTrust network, such as conventional Web search,

e-mail, Twitter, printed publications, etc.

The steps involved when a node joins the membership are given below, and

are illustrated in Figure 5.1.

1. A joining node contacts the bootstrapping node to obtain the bootstrap-

ping node’s current view of the membership.

2. The joining node then publishes its joining the membership to a subset

of nodes randomly chosen from the current view of the membership it

obtained from the bootstrapping node.

3. The randomly chosen nodes then add the new node to their local views

of the membership.

Another node learns about the new node when it receives a response from

a node that is aware of the new node.

5.1.2 Leaving the Membership

A node may leave the membership either voluntarily, or because it is faulty

or disconnected. The steps involved in leaving the membership are simple:

1. To leave the membership, a node just leaves, without publishing that it

is leaving.
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Figure 5.1: A node joins the membership by first contacting a bootstrap-
ping node to obtain that node’s current view of the membership, and then
publishing its joining to randomly chosen nodes in that view.

Figure 5.2: A requesting node distributes a request to nodes randomly
chosen from its view of the membership. A node that receives the request
returns the node(s) that it recently added to its view. A matching node also
returns the URL of the document to the requesting node.

Figure 5.3: The requesting node does not receive a response to its request
from a non-operational node. The requesting node sees a timeout expire or
receives an error code from TCP, and then removes that node from its view.
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Over time, each node individually discovers the departure of nodes when it

sends requests to nodes that do not respond. It is not appropriate to allow a

node to publish the departure of another node, because doing so might enable

a malicious node to cause the removal of many nodes from the local views of

other nodes.

5.1.3 Updating the Membership

In the messaging protocol described in Section 3.1, the requesting node ex-

pects to receive response messages only from the matching nodes. Other nodes

that do not have a match are not required to send a response to the requesting

node. We now modify that messaging protocol to enable a requesting node

to detect non-operational (leaving) nodes and to discover newly joining nodes

from the responses to its requests.

Now, the requesting node expects each node to which it sent a request

to respond to its request with its recently joined member(s), regardless of

whether or not that node has a match. Thus, a matching node sends in

its response to the requesting node not only the URL of the document at

the source node but also its recently joined member(s). If it does not have

a match, the node simply responds to the requesting node with its recently

joined member(s). Consequently, the requesting node discovers not only the

URLs of the documents, but also newly joined nodes through the responses to

its requests.
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If the requesting node does not receive a response from a node within a

timeout period or it receives an error code from TCP, then the non-responding

node is considered to have left the membership voluntarily or to be faulty, and

the requesting node removes that node from its view of the membership.

The steps involved in updating a requesting node’s view of the membership

are given below, and are illustrated in Figures 5.2 and 5.3.

1. A requesting node distributes its request to a subset of nodes randomly

chosen from its local view of the membership.

2. A node that receives the request compares the keywords in the request

with the metadata it holds. If it finds a match, the matching node

responds to the requesting node with a message that contains the URL

of the associated information and also its recently joined member(s). A

node that does not find a match still responds to the requesting node

with a message that contains its recently joined member(s).

3. When the requesting node receives the responses, it adds the new mem-

bers obtained from the other nodes to its view of the membership.

4. If the requesting node does not receive a response from a node to which

it sent a request before a timeout occurs, or if it receives an error code

from TCP, then the non-responding node is considered to have left the

membership voluntarily or to be faulty, and the requesting node removes

that node from its view of the membership.
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If the requesting node is also a source node then, after receiving the re-

sponses to its request, it distributes its metadata, together with the URL, for

the information, to additional nodes according to the following steps:

1. The requesting (source) node calculates the number of nodes to which

it needs to distribute its metadata, based on its current view of the

membership.

2. Next, the requesting node subtracts the number of nodes to which it

previously distributed metadata from the just calculated number.

3. Finally, the requesting node distributes its metadata to that many addi-

tional nodes, randomly chosen from its current view of the membership,

but to which it had not sent the metadata previously.

For example, suppose that a requesting node currently has N = 1024 nodes

in its local view of the membership. It distributes its request to R = 2
√
1024 =

64 randomly chosen nodes. Suppose further that only 58 nodes reply to the

requesting node. From the responses to its request, the requesting node detects

that there are 64 − 58 = 6 non-operational nodes. Suppose that as a result

of receiving the responses from the 58 nodes, the requesting node adds 40

new nodes to its view of the membership. Consequently, the requesting node

now has N = 1024 − 6 + 40 = 1058 nodes in its view of the membership. If

the requesting node is also a source node, then it distributes its metadata to
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2
√
1058 − 2

√
1024 ∼ 65 − 64 = 1 more node randomly chosen from its new

view of the membership.

5.2 Foundations

5.2.1 Environmental Variables

Membership churn refers to nodes joining and leaving the membership, and

is represented by the following rates:

• JR: The Joining Rate, the number of nodes that join the membership

per time unit. For example, JR = 50 means that 50 nodes join the

membership per time unit.

• LR: The Leaving Rate, the number of nodes that leave the membership

per time unit. For example, LR = 50 means that 50 nodes leave the

membership per time unit.

When the membership has a lot of churn, both JR and LR are high. When the

membership is stable, both JR and LR are low. These rates are an important

consideration for the membership protocols. A node can not control or alter

JR and LR, but it can adjust its requesting rate, as discussed in Section 5.5.

5.2.2 Parameters for the Membership Protocols

The parameters for the membership protocols are:
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• N : The number of nodes in a node’s local view of the membership.

• LastJ : The Last Joined members, the number of recently joined mem-

bers that a node may report to the requesting node. For example,

LastJ = 2 allows a node to report its two most recently joined members

to the requesting node.

• Try: The number of times that a requesting node sends its request mes-

sage, in an attempt to receive responses from 2
√
N nodes. Because some

request messages might be sent to non-operational nodes, a requesting

node might need to try several times before it receives responses from

2
√
N nodes.

• TryMax: The Maximum Try value, i.e., the maximum number of times

that a requesting node is allowed to try to send its request message.

• RR: The Requesting Rate, the number of times a node sends a request

message to R = 2
√
N nodes per time unit. For example, RR = 10

means that a node sends 10 distinct request messages per time unit,

each of which is sent to R = 2
√
N nodes.

• RRMin: The Minimum Requesting Rate, the minimum rate at which a

node is allowed to make requests.

• RRMax: The Maximum Requesting Rate, the maximum rate at which

a node is allowed to make requests.
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• c: The weighting factor of the exponential weighted moving average

method used by the membership protocols.

When a node joins the membership, it obtains the values of LastJ , TryMax,

RRMin, RRMax, and c. These parameters are tunable, and their tunability

is discussed in Section 5.3.

5.2.3 Performance Metrics

The performance metrics for the membership protocols are defined in terms

of the following quantities:

• L: The number of leaving nodes that a requesting node has not detected.

• J : The number of joining nodes that a requesting node has not discov-

ered.

• I: The number of nodes in the intersection of the requesting node’s

current view of the membership and the actual membership.

The requesting node’s current view of the membership consists of I+L nodes,

whereas the actual membership consists of I + J nodes. Figure 5.4 illustrates

the quantities I, L and J .

The performance metrics for the membership protocols are:

• LND: The Leaves Not Detected, the proportion of leaving (non-operational)

nodes in its current view that a requesting node has not detected at a
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Figure 5.4: A node’s current view of the membership vs. the actual
membership.

particular time, defined by:

LND =
L

I + L
(5.1)

• JND: The Joins Not Discovered, the proportion of newly joined nodes

in the actual membership that a requesting node has not discovered at

a particular time, defined by:

JND =
J

I + J
(5.2)

• MA: The Membership Accuracy, the number of nodes in a node’s current

view that are in the actual membership divided by that number of nodes

plus the number of leaving nodes not detected plus the number of joining

nodes not discovered, defined by:

MA =
I

I + L+ J
(5.3)
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Note that MA = I/(I +L+ J) = 1− (L+ J)/(I +L+ J), where L+ J

is the number of leaving nodes that the node has not detected plus the

number of newly joining nodes that the node has not discovered and,

therefore, (L + J)/(I + L + J) represents the inaccuracy in the node’s

view of the membership.

• MP : The Match Probability of one or more responses for a request,

averaged over all requesting nodes.

• RT : The Response Time required for a request, from the time that a

node starts sending its request to the other nodes until it finishes receiv-

ing the responses to that request from those nodes, including responses

for multiple tries, averaged over all requesting nodes.

• MC: The Message Cost per node per time unit, calculated as an average

over all nodes over time.

5.2.4 Measured Values

Our membership protocols for iTrust use the following measured values:

• Left: The number of nodes that a requesting node detected are non-

operational (have left the membership) since its last request.

• Joined: The number of nodes that the requesting node discovered have

joined the membership since its last request.
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• NumNodes: The number of nodes to which the requesting node sent its

request, depending on the particular membership protocol.

Using these measured values, a node calculates a Churn Estimator for each

request when it finishes receiving the responses to that request, defined as

follows:

• CE: The Churn Estimator, an estimate of the churn in the membership

(leaves and joins) obtained by random sampling, given by:

CE =
Left+ Joined

NumNodes
(5.4)

The Churn Estimator is used in the membership protocols to adapt the re-

questing rate RR, and is an input to the exponential weighted moving average

algorithm.

5.2.5 Exponential Weighted Moving Average Algorithm

The adaptive membership protocols for iTrust uses the exponential weighted

moving average (EWMA) algorithm to process a sequence of estimated values

for the Churn Estimator CE, to smooth the estimated values and reduce the

noise inherent in the individual data samples.

A requesting node issues requests (queries), collects responses, detects non-

operational nodes, discovers newly joined nodes, and then computes the esti-

mated value CE. To compute the estimated value CE, it applies the EWMA
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EWMA(v, c, s)

1 if (t == 0) then s← v

2 else s← c× v + (1− c)× s

3 return s

Figure 5.5: Pseudocode for the EWMA algorithm.

algorithm defined by:

s1 = v1 (5.5)

st = c× vt + (1− c)× st−1 if t > 1

where:

• c: The smoothing factor, 0 ≤ c ≤ 1

• st: The output of the EWMA algorithm at time t.

For example, if c = 0.7 (which is the value of c we use in our experiments),

the current value vt = 0.85 and the previous value st−1 = 0.95, then the new

value st is:

st = c× vt + (1− c)× st−1

= 0.7× 0.85 + (1− 0.7)× 0.95

= 0.88

The pseudocode for the EWMA algorithm is given in Figure 5.5.

Although c = 0.7 is an appropriate value of c for our experiments, iTrust

offers the user the option to choose a value of c for the particular network

environment. Different users, operating in different network environments with
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different objectives, might choose different values of c, and iTrust allows them

to do so.

5.2.6 Experimental Methodology

To evaluate the membership protocols, we performed experiments using a

simulation of iTrust. In the simulation, we can control the leaving rate LR

and the joining rate JR, which a real-world deployment would not allow us to

do. Moreover, in the simulation, we can compare a node’s current view of the

membership against the actual membership.

Before we start the simulation program, we initialize the value of N , the

number of nodes in the actual membership. The program adds all of the nodes

to each node’s view of the membership, so that each node has the complete

initial membership. Then, at each time step, nodes might join the membership,

leave the membership, and send requests. Different nodes might have different

views of the membership, and different nodes might make requests at different

rates. At each time step, the program computes the performance metrics.

5.3 Non-Adaptive Membership Protocol

The Non-Adaptive Membership Protocol implements the membership pro-

tocol for iTrust, described in Section 5.1, which involves requesting nodes

updating their local views of the membership, as other nodes join and leave

101



Chapter 5. Membership Management for iTrust

NonAdaptive(N,RR)

1 while true do

2 nextRequestT ime← time+ (timeunit/RR)

3 wait until (time == nextRequestT ime)

4 R← 2 × sqrt(N)

5 responses← makeRequests(view,R)

6 responded← 0

7 for (j ← 0 to R) do

8 if (responses[j].noResponse) then

9 removeNode(view, responses[j].node)

10 N ← N − 1

11 else

12 responded← responded+ 1

13 if (responses[j].recent) then

14 isNew = addNode(view, responses[j].recentNode)

15 if (isNew) then

16 N ← N + 1

Figure 5.6: Non-Adaptive Membership Protocol.

the membership. The pseudocode for the Non-Adaptive Membership Protocol

is given in Figure 5.6. The inputs for the Non-Adaptive Membership Protocol

are N and RR. Here N is the number of nodes in the node’s local view of the

membership and RR is the node’s requesting rate.

Line 1 starts an infinite loop where, in line 2, nextRequestT ime is set to

the current time plus timeunit/RR, which is the time when the node sends its

next request. As time passes, time is automatically incremented (not shown

in the pseudocode); moreover, timeunit is the length of the time unit. In line

3, the algorithm waits until the current time reaches the nextRequestT ime.

In line 4, the algorithm sets the number R of nodes to which the node sends

its request message to 2
√
N , where N is the number of nodes in the node’s
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current view of the membership. In line 5, the node sends its request message

to R nodes, and waits for responses from those nodes. In line 6, the algorithm

sets responded to 0.

In line 7, the algorithm iterates through the responses array. In line 8, the

algorithm checks whether the node received a response from node j. If not, in

line 9, it removes the non-responsive node from the node’s view and, in line

10, it decrements the number N of nodes in that view. Otherwise, in line 12,

the algorithm increments responded. In line 13, the algorithm checks whether

node j’s response contains a recent node. If so, in line 14, it invokes addNode()

to add the recent node to its view. The procedure addNode() returns a boolean

isNew to indicate whether the recent node was already present in the node’s

view. In line 15, the algorithm checks whether the recent node is indeed new

and, if so, in line 16, it increments the number N of nodes in the node’s view.

Control then returns to continue the iteration through the responses array in

line 7.

When the algorithm finishes iterating through the responses array, it goes

back to line 1, and repeats these steps indefinitely.

5.3.1 Investigation of LastJ

For the Non-Adaptive Membership Protocol, we investigate LastJ , the

number of newly joined nodes that a responding node may report to a re-

questing node, and its effect on LND (the proportion of leaving nodes that
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the requesting node has not detected) and JND (the proportion of newly

joined nodes that the requesting node has not discovered).

In the Non-Adaptive Membership Protocol, a requesting node distributes

its request to R = 2
√
N nodes chosen at random from its local view of the

membership. Initially, we required those nodes to return their entire views

to the requesting node, and the requesting node to update its view accord-

ingly. The problem is that the requesting node obtains some non-operational

nodes from other nodes that have not yet detected that those nodes are non-

operational. Thus, the requesting node adds back into its view too many

non-operational nodes, including nodes that it recently removed. The request-

ing node can not distinguish between such non-operational nodes that left the

membership, and nodes that left the membership and recently re-joined.

Several possible solutions to this problem exist. One solution is that once

a requesting node has obtained the views from the other nodes, it sends a

“verify” message to confirm whether those nodes are indeed operational. Such

a solution consumes a lot of network bandwidth. Another less costly solution

is to require the 2
√
N nodes to return, to the requesting node, their “most

recently joined members,” rather than their entire views. We adopt the latter

solution and investigate how LastJ affects LND and JND.

We consider a scenario where N = 1024 nodes with a high leaving rate

(LR = 300), a high joining rate (JR = 300), and a low requesting rate (RR =

10). Figure 5.7, 5.8, and 5.9 show the graphs for LND and JND over time for
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Figure 5.7: Graphs for the Non-Adaptive Membership Protocol, showing
LND and JND over time for LastJ = 1, where N = 1024 initially, LR =
300, JR = 300, and RR = 10.

Figure 5.8: Graphs for the Non-Adaptive Membership Protocol, showing
LND and JND over time for LastJ = 2, where N = 1024 initially, LR =
300, JR = 300, and RR = 10.

Figure 5.9: Graphs for the Non-Adaptive Membership Protocol, showing
LND and JND over time for LastJ = 3, where N = 1024 initially, LR =
300, JR = 300, and RR = 10.
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this scenario. Increasing LastJ from LastJ = 1 in the left graph to LastJ = 2

in the middle graph results in a decrease in JND but an increase in LND.

Increasing LastJ from LastJ = 2 in the middle graph to LastJ = 3 in the

right graph results in a slight decrease in JND and little change in LND.

Thus, increasing LastJ definitely helps the requesting node to discover

more joining nodes as it issues more requests. However, increasing LastJ also

causes the requesting node to add back into its local view too many non-

operational (leaving) nodes. Setting LastJ = 2 increases LND with worse

results than setting LastJ = 1. Similarly, setting LastJ = 3 does not help to

decrease LND. We conclude that LastJ = 1 is an appropriate value to use

for our further experiments.

5.4 Retry R Membership Protocol

As we have just seen, increasing LastJ does not help to detect leaving

(non-operational) nodes. Thus, we investigate other methods to reduce LND,

the proportion of leaving nodes that a requesting node has not detected.

When a node distributes a request message to 2
√
N nodes, it might not

receive 2
√
N responses for its request, because non-operational (leaving) nodes

do not respond. Thus, first, we investigate a retry method that allows the

requesting node to distribute its request message to more than 2
√
N nodes

until it receives 2
√
N responses. We call this protocol the Retry RMembership
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RetryR(N , TryMax, RR)

1 while true do

2 nextRequestT ime← time+ (timeunit/RR)

3 wait until (time == nextRequestT ime)

4 R← 2 × sqrt(N)

5 resRec← 0

6 Try ← 1

7 while ((Try <= TryMax) and (resRec < R)) do

8 responses← makeRequests(view,R− resRec)

9 responded← 0

10 for (j ← 0 to (R− resRec)) do

11 if (responses[j].noResponse) then

12 removeNode(view, responses[j].node)

13 N ← N − 1

14 else

15 responded← responded+ 1

16 if (responses[j].recent) then

17 isNew = addNode(view, responses[j].recentNode)

18 if (isNew) then

19 N ← N + 1

20 resRec← resRec+ responded

21 Try ← Try + 1

Figure 5.10: Retry R Membership Protocol.

Protocol. The pseudocode for the Retry R Membership Protocol is given

in Figure 5.10. The inputs for the Retry R Membership Protocol are N ,

TryMax, and RR. Here, N is the number of nodes in the node’s local view

of the membership, TryMax is the number of times a node is allowed to try

to obtain 2
√
N responses, and RR is the node’s requesting rate.

Line 1 starts an infinite loop where, in line 2, nextRequestT ime is set to

the current time plus the time timeunit/RR until the next request. In line 3,

the algorithm waits until the current time reaches nextRequestT ime.
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In line 4, the algorithm sets the number R of nodes to which the node

send its request message to R = 2
√
N , where N is the number of nodes in the

node’s current view of the membership. In line 5 and line 6, the algorithm

sets the number resRec of responses received to zero and the number Try of

tries to one, and then starts the while loop in line 7. Then, in line 8, the node

sends its request message to R − resRec nodes, and waits for responses from

those nodes. In line 9, the algorithm sets responded to 0.

In line 10, the algorithm iterates through the responses array. In line 11,

the algorithm checks whether the node received a response from node j. If

not, in line 12, it removes the non-responsive node from the node’s view and,

in line 13, it decrements the number N of nodes in that view. Otherwise, in

line 15, it increments responded. In line 16, the algorithm checks whether

j’s response contains a recent node. If so, in line 17, it invokes addNode() to

add the recent node to the node’s view. The procedure addNode() returns a

boolean isNew to indicate whether the recent node was already present in the

node’s view. In line 18, the algorithm checks whether the recent node is indeed

new and, if so, in line 19, it increments the number N of nodes in the node’s

view. Control then returns to continue the iteration through the responses

array in line 10.

After it has finished iterating through the responses array, in line 20,

the algorithm increases resRec by responded, the number of responses in the

responses array and, in line 21, the algorithm increments Try. Control then
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returns to the while loop in line 7 to determine whether Try is less than or

equal to TryMax and resRec is less than R. If both of those conditions are

satisfied, the algorithm goes through the while loop again.

Otherwise, the algorithm goes back to line 1, and repeats these steps in-

definitely.

5.4.1 Investigation of Try

We now investigate values of the variable Try, the number of times that

a requesting node tries to send its request message, in order to receive 2
√
N

responses. For example, Try = 1 means that a requesting node sends its

request message to R = 2
√
N nodes regardless of the number of responses

that it receives. Try = 2 means that a requesting node tries a second time

and sends its request message to Left nodes, where Left nodes did not respond

on its first Try and, similarly, for Try = 3. Try =∞ means that a requesting

node sends its request message repeatedly until it receives responses from 2
√
N

nodes for that particular request message.

Table 5.1 shows the membership accuracy MA, match probability MP ,

response time RT , and message costMC for Try = 1, 2, 3,∞, where N = 1024

initially, LastJ = 1, LR = 300, JR = 300, and RR = 10 for the Retry R

Membership Protocol.

We see that as Try is increased from Try = 1 to Try = 2, both MA and

MP are greatly increased but, when Try is further increased to Try = 3, there
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Try 1 2 3 ∞
MA 0.5966 0.6821 0.6986 0.7048
MP 0.9345 0.9817 0.9865 0.9864
RT 6.0 11.9274 17.6573 24.1682
MC 3.8552 5.1538 5.4527 5.5598

Table 5.1: Retry R with Try = 1, 2, 3,∞.

is not much increase in either MA or MP . We also see that both the response

time RT and the message cost MC increase as Try is increased. To obtain

a substantial increase in the membership accuracy and the match probability

with a reasonable increase in the response time and the message cost, we use

Try = 2 in our further experiments.

5.5 Adaptive RR Membership Protocol

The next membership protocol we consider adjusts the requesting rate

RR, based on the value of CE, the Churn Estimator. We call this protocol

the Adaptive RR Membership Protocol. The pseudocode for the Adaptive

RR Membership Protocol is given in Figure 5.11. The inputs for the Adaptive

RR Membership Protocol are N , RR, RRMin, RRMax, and c. Here N is

the number of nodes in the node’s local view of the membership, and RR is

the node’s initial requesting rate.

In line 1, the variable for the Churn Estimator CE (which controls the

Adaptive RR Membership Protocol and whose values are averaged using the

EWMA algorithm) is initialized to 0. Line 2 starts the infinite loop where, in
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AdaptiveRR(N,RR,RRMin,RRMax, c)

1 CE ← 0

2 while true do

3 nextRequestT ime← time+ (timeunit/RR)

4 wait until (time == nextRequestT ime)

5 Left← 0

6 Joined← 0

7 R← 2 × sqrt(N)

8 responses← makeRequests(view,R)

9 for (j ← 0 to R) do

10 if (responses[j].noResponse) then

11 removeNode(view, responses[j].node)

12 N ← N − 1

13 Left← Left+ 1

14 else

15 if (responses[j].recent) then

16 isNew = addNode(view, responses[j].recentNode)

17 if (isNew) then

18 N ← N + 1

19 Joined← Joined+ 1

20 currentCE ← (Left+ Joined)/R

21 CE ← EWMA(CE, currentCE, c)

22 if CE > RRMin/RRMax then

23 RR← RRMax× CE

24 else

25 RR← RRMin

Figure 5.11: Adaptive RR Membership Protocol.

Line 3, nextRequestT ime is set to the current time plus the time timeunit/RR

until the next request. In line 4, the algorithm waits until the current time

reaches nextRequestT ime.

In line 5 and line 6, the variables Left and Joined (which count the changes

in the node’s view of the membership) are initialized to zero. In line 7, the

algorithm sets the number R of nodes to which the node sends its request
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message to R = 2
√
N , where N is the number of nodes in its current view

of the membership. Then, in line 8, the node sends its request message to R

nodes, and waits for their responses.

In line 9, the algorithm iterates through the responses array. In line 10,

the algorithm checks whether the node received a response from node j. If

not, in line 11, it removes the non-responsive node from the node’s view and,

in line 12 and line 13, it decrements the number N of nodes in that view and

increments the number Left of nodes that have left. Otherwise, in line 15, the

algorithm checks whether j’s response contains a recent node. If so, in line 16,

the algorithm invokes addNode() to add the recent node to the node’s view.

The procedure addNode() returns a boolean isNew to indicate whether the

recent node was already present in the node’s view. In line 17, the algorithm

checks whether the recent node is indeed new and, if so, in line 18 and line

19, it increments the number N of nodes in the node’s view and increments

the number Joined of nodes that have recently joined. Control then returns

to continue the iteration through the responses array in line 9.

After it has processed the responses array, in line 20 the algorithm calcu-

lates currentCE and then, in line 21, applies the EWMA algorithm to obtain

the smoothed value of CE.

In line 22 to line 25, the algorithm calculates the value of the requesting

rate RR for the next time unit, corresponding to the smoothed value of CE.

Then, the algorithm goes back to line 2 and repeats these steps indefinitely.
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Non-Adaptive Retry R Adaptive RR
MA 0.5966 0.6821 0.8581
MP 0.9345 0.9817 0.9728
RT 6.0 11.9274 6.0
MC 3.8552 5.1538 12.5690

Table 5.2: Non-Adaptive vs. Retry R with Try = 2 vs. Adaptive RR with
Try = 1 and RRMax = 100.

5.5.1 Non-Adaptive vs. Retry R vs. Adaptive RR

Figures 5.12, 5.13, and 5.14 show the graphs for LND and JND over

time for the Non-Adaptive Membership Protocol (top graph), the Retry R

Membership Protocol (middle graph), and the Adaptive RR Membership Pro-

tocol (bottom graph). Here N = 1024 initially, LastJ = 1, LR = 300,

JR = 300, and c = 0.7. For the Non-Adaptive and Retry R Membership Pro-

tocols, RR = 10. For the Adaptive RR Membership Protocol, RRMin = 1,

RRMax = 100, and RR = 10 initially.

In Figure 5.13, we see that for the Retry R Membership Protocol, LND

decreases to about 0.26 and JND decreases to about 0.12. In Figure 5.14,

for the Adaptive RR Membership Protocol, LND greatly decreases to about

0.14 and JND decreases to almost zero. Thus, from these graphs, we see

that increasing RR is more effective than increasing the number of tries, in

decreasing both LND and JND.

Table 5.2 presents the membership accuracy MA, match probability MP ,

response time RT , and message cost MC for the Non-Adaptive, Retry R, and

Adaptive RR Membership Protocols.
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Figure 5.12: Graphs showing LND and JND over time for the Non-
Adaptive Membership Protocol, where N = 1024 initially, LastJ = 1,
LR = 300 and JR = 300.

Figure 5.13: Graphs showing LND and JND over time for the Retry R
Membership Protocol, where N = 1024 initially, LastJ = 1, LR = 300 and
JR = 300.

Figure 5.14: Graphs showing LND and JND over time for the Adaptive
RR Membership Protocol, where N = 1024 initially, LastJ = 1, LR = 300
and JR = 300.
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For the membership accuracy MA, we see that the Adaptive RR Member-

ship Protocol has the highest membership accuracy, whereas the Non-Adaptive

and Retry R Membership Protocols have a much lower membership accuracy.

For the match probability MP , the Retry R Membership Protocol achieves

the highest match probability, whereas the Non-Adaptive Membership Pro-

tocol has the lowest match probability. For the response time RT , both the

Non-Adaptive and Adaptive RR Membership Protocols have a low response

time, whereas the Retry R Membership Protocol has a much higher response

time. For the message cost MC, the Adaptive RR Membership Protocol has

a message cost that is about 3 times that of the Non-Adaptive Membership

Protocol and about 2.5 times that of the Retry R Membership Protocol.

Thus, for the Adaptive Membership Protocol, when the requesting rate is

high, the membership accuracy is also high, but the message cost is much too

high. Similarly, even though the Retry R Membership Protocol achieves the

highest match probability, its response time is too high and its membership

accuracy is too low.

Therefore, we continue our investigations into an adaptive membership

protocol that is intermediate between the Retry R Membership Protocol and

the Adaptive RR Membership Protocol.
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5.6 Combined Adaptive Membership Protocol

Now, we consider a membership protocol that not only adapts a node’s

requesting rate RR based on the Churn Estimator CE but also tries a second

time (Try = 2) to obtain 2
√
N responses to a node’s request. We call this

protocol the Combined Adaptive Membership Protocol. The pseudocode for

the Combined Adaptive Membership Protocol is given in Figure 5.15. The

inputs for the Combined Adaptive Membership Protocol are N , RR, RRMin,

RRMax, and c. Again, N is the number of nodes in the node’s local view of

the membership, and RR is the node’s initial requesting rate.

In line 1, the variable for the Churn Estimator CE (which controls the

Combined Adaptive RR Membership Protocol and whose values are averaged

using the EWMA algorithm) is initialized to 0. Line 2 starts the infinite loop

where, in Line 3, nextRequestT ime is set to the current time plus the time

timeunit/RR until the next request. In line 4, the algorithm waits until the

current time reaches nextRequestT ime.

In line 5 and line 6, the variables Left and Joined are initialized to zero.

In line 7, the algorithm sets the number R of nodes to which to send its request

message to R = 2
√
N , where N is the number of nodes in its current view of

the membership and, in line 8, it initializes to zero the variable resRec, which

counts the number of nodes from which it received responses.
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CombinedAdaptive(N,RR,RRMin,RRMax, c)

1 CE ← 0

2 while true do

3 nextRequestT ime← time+ (timeunit/RR)

4 wait until (time == nextRequestT ime)

5 Left← 0

6 Joined← 0

7 R← 2 × sqrt(N)

8 resRec← 0

9 Try ← 1

10 while ((Try <= 2) and (resRec < R)) do

11 responses← makeRequests(view,R− resRec)

12 responded← 0

13 for (j ← 0 to (R− resRec)) do

14 if (responses[j].noResponse) then

15 removeNode(view, responses[j].node)

16 N ← N − 1

17 Left← Left+ 1

18 else

19 responded← responded+ 1

20 if (responses[j].recent) then

21 isNew = addNode(view, responses[j].recentNode)

22 if (isNew) then

23 N ← N + 1

24 Joined← Joined+ 1

25 resRec← resRec+Responded

26 Try ← Try + 1

27 currentCE ← (Left+ Joined)/(R +R− resRec)

28 CE ← EWMA(CE, currentCE, c)

29 if CE > RRMin/RRMax then

30 RR← RRMax× CE

31 else

32 RR← RRMin

Figure 5.15: Pseudocode for the Combined Adaptive Membership Protocol.

In line 9, the variable Try is initialized to 1. The loop commencing with

line 10 is potentially executed twice; it is executed once if the number of
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responses received (resRec) in the first try is equal to the number R of nodes

to which the node sent its request message. In line 11, the node sends its

request message to R− resRec nodes, and waits for the responses from those

nodes. In line 12, the algorithm sets the variable responded to 0.

In line 13, the algorithm iterates through the responses vector. In line 14,

the algorithm checks whether the node received a response from node j. If

not, in line 15, the node removes the non-responsive node from its view and,

in line 16 and line 17, it decrements the number N of nodes in its view and

increments the number Left of nodes that have left. Otherwise, in line 19,

the algorithm increments responded. Then, in line 20, the algorithm checks

whether j’s response contains a recent node. If so, in line 21, the algorithm

invokes addNode() to add the recent node to the node’s view. The procedure

addNode() returns a boolean isNew to indicate whether the new node was

already present in the node’s view. In line 22, the algorithm checks whether

the recent node is indeed new and, if so, in line 23 and line 24, it increments

the number N of nodes in the node’s view and increments the number Joined

of newly joined nodes in that view. In line 25, the algorithm increases resRec

by responded, the number of nodes that responded in this try. In line 26, the

algorithm increments Try, and control then returns to the while loop in line

10 to determine whether Try is less than or equal to 2 and resRec is less than

R. If both of those conditions are satisfied, the algorithm goes through the

while loop again.
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After the algorithm has completed the while loop in line 10, it calculates

currentCE in line 27 using the values of Left, Joined, and resRec it obtained

in the loop. Then, in line 28, the algorithm invokes the EWMA algorithm to

calculate the smoothed value of CE.

In line 29 to line 32, the algorithm calculates the value of the requesting

rate RR for the next time unit, corresponding to the smoothed value of CE.

Then, the algorithm goes back to line 2 and repeats these steps indefinitely.

With Try = 2, a requesting node sends its request to more nodes to try

to obtain 2
√
N responses to its request and, thus, the Combined Adaptive

Membership Protocol does not need to increase the requesting rate RR as

much as does the Adaptive RR Membership Protocol. Thus, we realize some

savings in the message cost MC, compared to the Adaptive RR Membership

Protocol.

5.6.1 Investigation of RRMax

Now we investigate different values of RRMax for the Combined Adaptive

Membership Protocol, in particular, RRMax = 100, 50, 30.

Table 5.3 shows the values of the membership accuracy MA, match proba-

bility MP , response time RT , and message cost MC for the Combined Adap-

tive Membership Protocol in these three cases.

We see that as RRMax is decreased from RRMax = 100 to RRMax = 50,

MA decreases and MP slightly decreases. When RRMax is further decreased
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RRMax 100 50 30
MA 0.8663 0.8198 0.7579
MP 0.9843 0.9836 0.9822
RT 11.9874 11.9883 11.9885
MC 13.4939 9.3156 6.9104

Table 5.3: Combined Adaptive with RRMax = 100, 50, 30.

to RRMax = 30, again MA decreases and MP slightly decreases. We also see

that as RRMax is decreased, the response time RT remains about the same

and the message cost MC decreases substantially, such that the message cost

for RRMax = 100 is nearly twice that for RRMax = 30. Thus, to keep the

message cost relatively low while obtaining reasonable membership accuracy,

we choose RRMax = 50 in our further experiments.

5.6.2 Retry R vs. Adaptive RR vs. Combined Adaptive

Table 5.4 shows the membership accuracy MA, the match probability P ,

the response time RT , and the message cost MC for the Retry R, Adaptive

RR, and Combined Adaptive Membership Protocols. Here, N = 1024 initially,

LastJ = 1, LR = 300, JR = 300 and c = 0.7. For the Retry R Membership

Protocol, Try = 2 and RR = 10. For the Adaptive RR Membership Protocol,

Try = 1, RRMin = 1, RRMax = 100, and RR = 10 initially. For the

Combined Adaptive Membership Protocol, Try = 2, RRMin = 1, RRMax =

50, and RR = 10 initially.

From Table 5.4, we see that the membership accuracy MA for the Com-

bined Adaptive Membership Protocol is 0.8198, which is much better than that
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Retry R Adaptive RR Combined Adaptive
MA 0.6821 0.8581 0.8198
MP 0.9817 0.9728 0.9836
RT 11.9274 6.0 11.9883
MC 5.1538 12.5690 9.3156

Table 5.4: Retry R with Try = 2 vs. Adaptive RR with Try = 1 and
RRMax = 100 vs. Combined Adaptive with Try = 2 and RRMax = 50.

for the Retry R Membership Protocol, but worse than that for the Adaptive

RR Membership Protocol. We also see that the match probability MP for

the Combined Adaptive Membership Protocol is 0.9836, which is better than

the match probability for the Adaptive RR Membership Protocol and slightly

better than the match probability for the Retry R Membership Protocol. We

see further that the response time RT for the Combined Adaptive Member-

ship Protocol is about the same as that for the Retry R Membership Protocol,

which is about double that of the Adaptive RR Membership Protocol. We

also see that the message cost MC of the Combined Adaptive Membership

Protocol lies between that of the Retry R Membership Protocol and that of

the Adaptive RR Membership Protocol, and is about three-fourths that of the

Adaptive RR Membership Protocol.

Figure 5.16 shows the Pareto Optimal curve for the membership accuracy

and the message cost with various Membership Protocols. Our goal is to have

the membership protocol to achieve the highest membership accuracy with

the lowest message cost. From this figure, we can see the Combined Adaptive

Membership Protocol balances the message cost MC against the membership
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Figure 5.16: Pareto optimal curve for the Membership Accuracy and Message
Cost for various Membership Protocols

accuracy MA. The message cost MC of the Combined Adaptive Membership

Protocol is less than that of the Adaptive RR Membership Protocol and,

correspondingly, the membership accuracy MA of the Combined Adaptive

Membership Protocol is greater than that of both the Retry R and the Non-

Adaptive Membership Protocols.

5.7 Extended Scenario

Now, we investigate the effectiveness of the Combined Adaptive Member-

ship Protocol to see how well it handles the following extreme cases:

• Case 1: High leaving rate, high joining rate

• Case 2: High joining rate, low leaving rate
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• Case 3: Low joining rate, high leaving rate.

In particular, we consider an extended scenario that comprises the following

five scenarios:

• Scenario 1: LR = 10, JR = 10 for time 0 to 3000

• Scenario 2: LR = 300, JR = 300 for time 3000 to 6000

• Scenario 3: LR = 0, JR = 300 for time 6000 to 9000

• Scenario 4: LR = 300, JR = 0 for time 9000 to 12000

• Scenario 5: LR = 0, JR = 0 for time 12000 to 15000.

For all five scenarios, we set LastJ = 1 and c = 0.7. Initially, there are

N = 1024 nodes in the membership, and each node’s view of the membership

is the entire membership. As time progresses, each member changes its view

of the membership. The number M of nodes to which the metadata are

distributed and the number R of nodes to which the requests are distributed

are both set to 2
√
N , where N is the number of nodes in the node’s current

view of the membership at a given time step.

We compare the effectiveness of the Combined Adaptive Membership Pro-

tocol and the Non-Adaptive Membership Protocol by considering the extended

scenario that comprises these five scenarios.
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Figure 5.17: Graphs of LND, JND, MA and MP for the Non-Adaptive
Membership Protocol where LastJ = 1 and c = 0.7.

5.7.1 Non-Adaptive

Figure 5.17 shows the graphs of LND, JND, MA, and MP for the Non-

Adaptive Membership Protocol. Here, LastJ = 1 and RR is fixed at RR = 10

for all five scenarios.

In the first scenario, the leaving, joining, and requesting rates are low and

the same (LR = JR = RR = 10). The values of LND and JND remain

low, because a node detects non-operational (leaving) nodes and discovers

newly joining nodes within a short time interval. The membership accuracy

MA remains high throughout the first scenario (MA = 0.9873). The match

probability MP is generally higher than the value obtained from the analytic

formula (0.9817) given in [60].

In the second scenario, the values of LR and JR are much higher than

the value of RR (LR = JR = 300 and RR = 10). The values of LND

and JND increase, because a node can not detect enough non-operational
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(leaving) nodes and can not discover enough newly joined nodes within a short

time interval. The membership accuracy MA dramatically decreases to about

0.5852. Moreover, the match probability MP is quite variable, decreasing to

about 0.85 and then increasing to about 0.9350.

In the third scenario, the value of LR is low, the value of JR is high, and

the value of RR is low (LR = 0, JR = 300, and RR = 10). The values of

LND decrease because LR drops to LR = 0. The values of JND remain high

because JR remains high. The membership accuracy MA is higher than that

in the second scenario (because LR = 0), and slowly increases to about 0.9331

at the end of the third scenario. Similarly, the match probability MP slowly

increases from about 0.9350 to about 0.9850.

In the fourth scenario, the value of LR is high, the value of JR is low, and

the value of RR is low (LR = 300, JR = 0, and RR = 10). The values of

LND increase to about 0.4384. In addition, the membership accuracy MA

steadily decreases to about 0.5610. The reason is that most of the nodes have

not yet discovered all of the newly joined nodes from the third scenario, but

now more nodes are leaving the membership. The match probability MP

fluctuates considerably, decreasing to about 0.9.

Lastly, in the fifth scenario, the values of both LR and JR are low and the

value of RR is also low (LR = JR = 0 and RR = 10). Thus, the member-

ship accuracy MA slowly increases to about 0.9426. In addition, the match
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Figure 5.18: Graphs of LND, JND, RR, MA, and MP for the Com-
bined Adaptive Membership Protocol, where RR = 10, LastJ = 1, c = 0.7,
RRMax = 50, and Try = 2.

probability MP increases and remains high, hovering around the analytic ex-

pectation (0.9817).

5.7.2 Combined Adaptive

Figure 5.18 shows LND, JND, RR, MA, and MP for the Combined

Adaptive Membership Protocol. Here, LastJ = 1, c = 0.7, Try = 2, RRMax =

50, and RR = 10 initially.

In the first scenario, the values of the leaving rate and the joining rate are

low (LR = JR = 10). Thus, the values of both LND and JND are low,

because there are not many non-operational (leaving) nodes or newly joined

nodes. The value of RR quickly decreases to 3.6764, in order to reduce the
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message cost MC. The membership accuracy MA remains high throughout

the first scenario, and the match probability MP hovers around the analytic

expectation (0.9817).

In the second scenario, the values of LR and JR are high (LR = JR = 300),

and are much higher than the values of RR (RRMax = 50). Note that

the values of JND and LND shown in Figure 5.18 are much less than the

corresponding values of JND and LND for the Non-Adaptive Membership

Protocol shown in Figure 5.17. For the Combined Adaptive Membership Pro-

tocol, the value of RR is increased to about RR = 18.5161, which results in

a membership accuracy MA of about 0.8251 compared to about 0.5852 for

the Non-Adaptive Membership Protocol. Lastly, the match probability MP

remains high throughout the second scenario, and hovers around the analytic

expectation (0.9817), whereas in the Non-Adaptive Membership Protocol it

decreases to about 0.85.

In the third scenario, the value of LR is low and the value of JR is high

(LR = 0, JR = 300). Because LR is low, the values of LND remain close to

zero. The values of JND also remain close to zero. The Combined Adaptive

Membership Protocol adjusts the value of RR to about RR = 12.6922. Joining

nodes are discovered relatively quickly, and there are no new leaving nodes to

detect because LR = 0. Thus, the membership accuracy MA increases from

about 0.8251 to about 0.9739. The match probability MP still remains high,

and hovers around the analytic expectation (0.9817).
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In the fourth scenario, the value of LR is high and the value of JR is

low (LR = 300, JR = 0). Because the value of LR is high, the values of

LND increase to about 0.2669. The values of JND remain low, because

JR = 0. The Combined Adaptive Membership Protocol increases RR to

about RR = 16.5080, in order to detect leaving nodes more quickly. However,

leaving nodes are still not detected quickly enough, so LND increases and MA

decreases. The membership accuracy MA decreases to about 0.7307 at the

end of the fourth scenario. Finally, the match probability MP remains high,

and hovers around the analytic expectation (0.9817), in contrast to the Non-

Adaptive Membership Protocol where the match probability fluctuates and

decreases to about 0.9.

Lastly, the fifth scenario has a low value of LR and a low value of JR

(LR = JR = 0). The Combined Adaptive Membership Protocol decreases

the value of RR to about RR = 5.6349, in order to reduce the message cost

MC. The membership accuracy MA increases to, and remains at, about

0.9375 during most of the fifth scenario. Moreover, the match probability MP

remains high, and hovers around the analytic expectation (0.9817).

Finally, we average the membership accuracy MA, the match probability

MP , the response time RT , and the message cost MC over all five scenarios.

Table 5.5 shows the overall values of these metrics for the Non-Adaptive, Retry

R, Adaptive RR, and Combined Adaptive Membership Protocols, averaged

over all five scenarios. As we see from the table, the Combined Adaptive
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Combined
Non-Adaptive Retry R Adaptive RR Adaptive

MA 0.8149 0.8542 0.9217 0.8982
MP 0.9704 0.9841 0.9801 0.9858
RT 6.0 10.8262 6.0 11.0339
MC 5.0490 5.7335 8.8284 6.3305

Table 5.5: Non-Adaptive vs. Retry R with Try = 2 vs. Adaptive RR with
Try = 1 and RRMax = 100 vs. Combined Adaptive with Try = 2 and
RRMax = 50.

Membership Protocol achieves a membership accuracy MA of 0.8982, which is

quite good. Moreover, the Combined Adaptive Membership Protocol achieves

the best match probability (MP = 0.9858) of all four protocols. The response

time RT of the Combined Adaptive Membership Protocol is slightly more

than that for the Retry R Membership Protocol, and is much more than that

for the Non-Adaptive and Adaptive RR Membership Protocols. The message

cost MC of the Combined Adaptive Membership Protocol is less than that

for the Adaptive RR Membership, and is slightly more than that for the Non-

Adaptive and Retry R Membership Protocols, as shown in Table 5.5.

Figure 5.19 shows the Pareto Optimal curve for the membership accuracy

and the message cost with various Membership Protocols. From this figure,

we can see the message cost MC of the Combined Adaptive Membership

Protocol is less than that for the Adaptive RR Membership, and its Mem-

bership Accuracy MA are higher than that for the Non-Adaptive and Retry

R Membership Protocols. This figure shows us that our Combined Adaptive

Membership Protocol can balance the message cost MC against the member-
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Figure 5.19: Pareto optimal curve for the Membership Accuracy and Message
Cost for various Membership Protocols

ship accuracy MA quite well, as it does not require too much message cost

MC but still can maintain a high membership accuracy MA throughout all

five scenarios.

Overall, these experiments demonstrate that the Combined Adaptive Mem-

bership Protocol is effective in detecting non-operational (leaving) nodes and

in discovering newly joining nodes. When the leaving rate and the joining rate

are high, the Combined Adaptive Membership Protocol quickly increases RR

to obtain a high membership accuracy. Moreover, when the leaving rate and

the joining rate are low, the Combined Adaptive Membership Protocol de-

creases RR, in order to maintain a reasonable response time and a reasonable

message cost, while still maintaining a reasonable membership accuracy and
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a high match probability. As a result, the Combined Adaptive Membership

Protocol works well not only when the membership has a lot of churn, but also

when the membership is stable.

5.8 Summary

In this chapter, we have presented adaptive and non-adaptive member-

ship management protocols for the iTrust information retrieval network. The

membership protocols for iTrust allow each member to maintain its own local

view of the membership, and aim to keep that local view close to the actual

membership. A node that receives a request sends to the requesting node a

response that contains newly joined member(s) in its local view of the mem-

bership. The node also sends in its response the URL of the document, if the

keywords in the query match metadata that it holds.

A requesting node discovers newly joining nodes from the responses it

receives to its requests. Likewise, a requesting node detects leaving (non-

operational) nodes when it does not receive responses from those nodes before

a timeout, or when it receives an error code from TCP. Thus, the iTrust mem-

bership protocols exploit messages already required by the iTrust messaging

protocol for search and retrieval.

As our experiments demonstrate, for appropriate values of the parameters,

particularly for the Combined Adaptive Membership Protocol, the member-
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ship accuracy, response time, and message cost are reasonable, and the match

probability is high. The Combined Adaptive Membership Protocol works well

not only when the membership has a lot of churn but also when the member-

ship is stable.
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Statistical Inference and

Dynamic Adaptation for iTrust

In previous chapters, we have described a fully distributed membership

algorithm for iTrust [16], as well as algorithms for protecting iTrust against

malicious nodes [17]. Such malicious nodes do not return responses indicating

that they have a match between the metadata they hold and the keywords in

the requests they receive, effectively censoring that information.

In this chapter, we combine the dynamic adaptive membership algorithm

for increasing the requesting rate and the detection and defensive adaptation

algorithm for protecting against malicious nodes. Both of these algorithms

depend on information that cannot be measured directly, in particular, the

current size of the membership and the current proportion of malicious nodes

in the membership. Statistical inference algorithms provide estimates for both

of these metrics. These algorithms are sufficiently accurate and timely to allow

them to be used to manage the iTrust system in the presence of membership

churn and malicious nodes.
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6.1 Design of iTrust

The iTrust information publication, search and retrieval system is fully

distributed, and involves no centralized mechanisms and no centralized control.

In this chapter, we have refined our design of iTrust based on the strategy

presented in Chapter 3.

The nodes that participate in an iTrust network constitute the member-

ship of the network. The membership changes dynamically as nodes join and

leave the membership. Nodes that leave the membership do so voluntarily, or

because they have failed or have become disconnected. Moreover, some of the

nodes in the membership might be malicious. Each node has its own local view

of the membership. In iTrust, we do not aim to maintain an agreed accurate

membership; rather, we aim to keep a nodes’s local view of the membership

close to the actual membership.

6.1.1 Joining the Membership

To join the membership, a node first obtains the address of a bootstrapping

node, as shown in Figure 6.1. To obtain the address of the bootstrapping node,

the node uses mechanisms outside the iTrust network, such as conventional

Web search, e-mail, Twitter, printed publications, etc.

The steps involved when a node joins the membership are as follows:
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Figure 6.1: Joining the membership. A joining node obtains its initial view
of the membership from a bootstrapping node, and distributes a join message
to randomly chosen nodes in that view. Those nodes add the newly joined
node to their views.

Figure 6.2: Leaving the membership. A leaving node simply leaves. When
it does not respond to a request, other nodes detect that it has left and
remove it from their views.

Figure 6.3: Distributing metadata. A source node distributes metadata to
randomly chosen nodes in its view. Those nodes store the metadata and the
URL locally, and respond with their newly joined nodes. The source node
updates its view accordingly.
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1. A joining node contacts a bootstrapping node to obtain the bootstrap-

ping node’s current view as its initial view.

2. The joining node then distributes a join message to randomly chosen

nodes in its initial view.

3. Each randomly chosen node then adds the newly joined node to its local

view, and sends a response message to the newly joined node.

Over time, a node learns about a newly joined node when it receives a

response message from a node that is aware of the newly joined node.

6.1.2 Leaving the Membership

A node may leave the membership, as shown in Figure 6.2, voluntarily or

because it has failed or has become disconnected. The steps involved when a

node leaves the membership are as follows:

1. To leave the membership, a node simply leaves, without publishing its

leaving.

Over time, a node discovers the departure of nodes when it sends a message

to those nodes and they do not respond. It is not appropriate to allow a node

to publish the departure of another node, because doing so might enable a

malicious node to cause the removal of many nodes from other nodes’ views.
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6.1.3 Distributing Metadata

A source node produces metadata that describes its information, and dis-

tributes that metadata to randomly chosen nodes in its local view, as shown

in Figure 6.3. The metadata are distinct from the information they describe,

and include a list of keywords and the URL of the information at the source

node.

The steps involved when a source node distributes its metadata are as

follows:

1. A source node calculates the number of nodes to which it needs to dis-

tribute its metadata, based on its current view.

2. Next, the source node distributes its metadata together with the URL

of the information to randomly chosen nodes in its current view.

3. Each randomly chosen node stores the metadata and the URL locally,

and sends a response message to the source node.

When the source node detects the departure of nodes from the membership,

and those nodes hold metadata that it distributed, it re-calculates and re-

distributes the metadata to additional nodes.

6.1.4 Distributing Requests

A requesting node generates requests (queries) that contain keywords, and

distributes its requests to randomly chosen nodes in its local view. The re-
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questing node obtains the URLs of the documents from the matching nodes,

which it uses to retrieve the documents from the source nodes.

Some of the matching nodes might be malicious and respond to the request-

ing node, but not with the URL of the document corresponding to metadata

they hold, thus effectively hiding or censoring that information.

The steps involved when a requesting node distributes requests and updates

its view are as follows:

1. A requesting node distributes its request to randomly chosen nodes in

its local view, as shown in Figure 6.4.

2. A node that receives the request compares the keywords in the request

with the metadata it holds. If it finds a match, the node responds to the

requesting node with a message that contains the URL of the document.

A node that does not find a match still responds to the requesting node.

3. The requesting node can then use the URL, provided by the matching

node, to retrieve the information from the source node.

6.1.5 Updating the View

A source node or a requesting node expects each node to which it sent a

message to respond to its message with its recently joined member(s) (and, in

the case of a request, the URL of the document if it has a match). Thus, a
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Figure 6.4: A requesting node distributes its request to randomly chosen
nodes in its view of the membership. If a node matches the keywords in
the request against metadata it holds, it responds with the URL for the
information, which the requesting node uses to retrieve the information from
the source node.

Figure 6.5: A node that receives a request or metadata responds with the
most recently joined node in its view. The distributing node adds that newly
joined node to its view.

Figure 6.6: If the node sends a request or metadata to a node that has left,
it receives no response and removes that node from its view. If it had sent
metadata to the leaving node, it sends that metadata to an additional node.
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source node or a requesting node discovers newly joined nodes and adds them

to its view.

If a source node or a requesting node does not receive a response from a

node within a timeout period or it receives an error code from TCP, then it

considers the non-responding node to have left the membership and removes

that node from its view.

The steps involved in updating a node’s view are as follows:

1. A source node or a requesting node sends metadata or a request, respec-

tively, to randomly chosen nodes.

2. When the source node or the requesting node receives the responses, it

adds the newly joined members, obtained from the other nodes, to its

view, as shown in Figure 6.5.

3. If the source node or the requesting node does not receive a response

from a node to which it sent a request before a timeout occurs, or if it

receives an error code from TCP, then it considers the non-responding

node to have left the membership, and removes that node from its view,

as shown in Figure 6.6.

If a node was, at a prior time, a source node then, after receiving the

responses to its message, in addition to the above steps, it distributes its

previously distributed metadata along with the URL, to additional nodes, as

shown in Figure 6.6, according to the following steps:
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1. The node calculates the number of nodes to which it needs to distribute

its metadata, based on its current view of the membership.

2. Next, the node subtracts from that number the number of nodes to which

it previously distributed metadata, and then it adds the number of nodes

that had the metadata previously and that left the membership.

3. Then, the node distributes the metadata to that many additional nodes,

randomly chosen from its view, but to which it had not previously sent

the metadata.

4. Each randomly chosen node stores the metadata and the URL, and sends

a response to the source node.

6.2 Model for iTrust

6.2.1 System and Fault Model

The iTrust system operates over the Internet and is implemented using

HTTP, which operates over TCP. As such, communication is “reliable.” How-

ever, nodes may crash, or may go offline and become disconnected. That

is, nodes in the membership are assumed to follow the iTrust protocols and

algorithms, except that:

• A node may leave the membership voluntarily.
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• A node may crash or become disconnected, in which case it leaves the

membership involuntarily.

• A malicious node responds to a request but, if it has a match between

the keywords in a request and the metadata it holds, it fails to report

that match.

Note that a malicious node responds to requests because it knows that if

it does not, it will be immediately removed from the requesting node’s view

of the membership.

Actual Membership and View of the Membership

The actual membership and a node’s view of the membership are repre-

sented in terms of the following quantities:

• I: The number of nodes in the intersection of the node’s view of the

membership and the actual membership.

• J : The number of joining nodes that a node has not discovered.

• L: The number of leaving nodes that a node has not detected.

As illustrated in Figure 6.7, the actual membership consists of I+J nodes,

whereas a node’s view of the membership consists of I + L nodes. Of the I

nodes that are in the node’s view of the membership and also in the actual

membership, some of those nodes might be malicious. Likewise, some of the

L nodes and some of the J nodes might be malicious.
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Figure 6.7: A node’s current view of the membership vs. the actual
membership.

The quantities I, J and L, are used in the definition of the variables for

the Dynamic Adaptive Algorithm in Section 6.4 and in the definition of the

performance metrics for the evaluation in Section 6.5.

Membership Churn

Membership churn refers to nodes joining and leaving the membership, and

is represented by the following rates:

• JR: The Joining Rate, the number of nodes that join the membership

per time unit.

• LR: The Leaving Rate, the number of nodes that leave the membership

per time unit.

When the membership has a lot of churn, both JR and LR are high. Con-

versely, when the membership is stable, both JR and LR are low. A node
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can not directly know or control JR and LR, but it can adjust its rate of dis-

tributing requests or metadata in order to update its view of the membership

more quickly, in particular to detect leaving nodes more quickly.

Malicious Nodes

Malicious nodes can disrupt the behavior of the iTrust protocols and algo-

rithms by hiding or censoring information. Thus, they must adapt to circum-

vent such malicious nodes. To do so, they make use of the following quantity:

• X: The proportion of non-malicious nodes in the actual membership at

a particular point in time, i.e., 1−X is the proportion of malicious nodes

in the actual membership at that point in time.

When the membership has a lot of malicious nodes, 1 − X is high and X is

low. Conversely, when the membership has only a few malicious nodes, 1−X

is low and X is high. A node can not know or control X, but it can adjust the

number of nodes to which it distributes its request message in order to obtain

more responses to its request message.

6.3 Protecting Against Malicious Nodes

The algorithm for detecting malicious nodes estimates the proportion of

non-malicious nodes and, thus, the proportion of malicious or subverted nodes.
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For given values of n, m and r, the detection algorithm computes the

analytical (expected) probabilities for the number k of matches for various

values of X, such as X = 1.0, 0.8, 0.6, 0.4 and 0.2 using Equation (3.1). These

values of X enable the algorithm to discriminate the curves better and enable

it to find the estimated proportion x of non-malicious nodes (and, thus, the

estimated proportion 1 − x of malicious nodes) that yield significant changes

in the number r of nodes to which to distribute requests.

6.3.1 Detecting Malicious Nodes

The detection algorithm collects data on the number of responses that a

requesting node receives for its request, using the EWMA() method, shown

Figure 4.10 from Chapter 4. Then, it calculates the empirical probabilities

from the data. The algorithm excludes zero matches, because it can not dis-

tinguish the case in which no metadata exists from the case in which no node

holds both the metadata and the request.

Using the modified chi-squared test, shown in Figure 4.4, the detection

algorithm compares the normalized observed probabilities O(k) and the nor-

malized analytical probabilities P [X](k), for k = 1, 2, ..., kMax and X =

1.0, 0.8, 0.6, 0.4, 0.2. It then chooses, as the observed proportion of non-malicious

nodes, the value of x (x = 1.0, 0.8, 0.6, 0.4, 0.2) for which the chi-squared value

is the smallest. This value of x is the algorithm’s best estimate of the pro-
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Figure 6.8: The normalized analytical probabilities P [X] of the number k
of matches for different proportions X of non-malicious nodes. The detection
algorithm tries to match the curve for the normalized observed probabilities
against the curves for the normalized analytical probabilities shown in the
figure, in order to estimate the proportion x of non-malicious nodes in a node’s
view of the membership.

portion of non-malicious nodes, and corresponds to the curve with the best

fit.

For N = 1024 and M = R = 64, Figure 6.8 shows the graphs of the

normalized analytical probabilities P [X] forX = 1.0, 0.8, 0.6, 0.4, 0.2, obtained

from Equation (3.1). As the figure shows, many of the requests result in

multiple responses. These multiple responses are not waste, as they are used

to estimate the proportion x of non-malicious nodes in a node’s view of the

membership. As the figure shows, there is some overlap between the curves

for the different values of X. Nonetheless, the chi-squared test provides good

discrimination between the curves.
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The parameters and variables for the detection method xGet() that deter-

mines the estimated proportion x of non-malicious nodes are as follows:

• Oi: The array of unnormalized observed probabilities at time i.

• n: The number of nodes in a node’s view of the membership.

• m: The number of nodes in a source node’s view to which it distributes

metadata.

• r: The number of nodes in a requesting node’s view to which it dis-

tributes requests.

• kMax: The upper bound on the number k of responses to a request.

• P [X]: The array of analytical probabilities for a particular value of X.

• x: The estimated proportion of non-malicious nodes in a node’s view,

i.e., 1− x is the estimated proportion of malicious nodes in its view.

Pseudocode for the detection algorithm is given in Figure 6.9.

6.3.2 Defending against Malicious Nodes

When the detection algorithm estimates that the proportion x of non-

malicious nodes is less than 1.0, the defensive adaptation algorithm increases

the number r of nodes to which the requests are distributed, to achieve the

same probability of a match as when x = 1.0.
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xGet(O, n,m, r, kMax)

1 O ← norm(O, kMax)

2 X = 0.2

3 for (j ← 1 to 5) do

4 X ← 0.2× j

5 P [X]← findP(n,m, r, x, kMax)

6 P [X]← norm(P [X], kMax)

7 chiSq[X]← modChiSq(O,P [X], kMax)

8 x← min(chiSq[0.2],chiSq[0.4],chiSq[0.6],chiSq[0.8],chiSq[1.0])

9 return x

Figure 6.9: Detection method for estimating the value of x.

For example, consider an iTrust network with N = 1024, M = 64, and

X = 1.0, 0.8, 0.6, 0.4, 0.2. The defensive adaptation algorithm first determines

the value of y0 for the point on the X = 1.0 curve corresponding to N = 1024

and M = R = 64. Using Equation (3.3), it computes the probability of one or

more matches to obtain y0 = 0.9817 = P (k ≥ 1), as shown in Figure 6.10.

If the detection algorithm determines from empirical evidence that x =

0.8 then, from the calculated value of y0, the defensive adaptation algorithm

determines the value of r corresponding to y0 on the x = 0.8 curve. That is, it

solves the equation y0 = P (k ≥ 1) with N = 1024, M = 64, x = 0.8 and r to

obtain r = 80. Similarly, if the detection algorithm determines from empirical

evidence that x = 0.6, x = 0.4 or x = 0.2, the defensive adaptation algorithm

determines that r = 106, r = 156 or r = 289, respectively.

The parameters and variables for the defensive adaptation method rGet()

that determines the number r of nodes to which a requesting node distributes

its request, are as follows:
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Figure 6.10: Based on the curves for P (k ≥ 1) for X = 1.0, 0.8, 0.6, 0.4, 0.2,
the defensive adaptation algorithm increases or decreases the number of nodes
to which the requests are distributed to compensate for malicious nodes, in
order to achieve the same probability of a match as when none of the nodes is
malicious.

• n: The number of nodes in a node’s view of the membership.

• m: The number of nodes in a source node’s view to which it distributes

metadata.

• y0: The probability y0 = P (k ≥ 1) = 0.9817 of one or more matches

when R = M = 2
√
N and X = 1.0.

• r: The number of nodes in a requesting node’s view to which it dis-

tributes its request, in order to maintain the same probability of a match

when some of the nodes are malicious as when none of the nodes is ma-

licious.
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rGet(n, m, y0, x)

1 r = 0

2 Repeat

3 r ← r + 1

4 y ← 1− (n−mx)
(n)

(n−mx−1)
(n−1)

. . . (n−mx−r+1)
(n−r+1)

5 until (y > y0)

6 return r

Figure 6.11: Method for finding the value of r that maintains the same
probability of a match when some of the nodes are malicious as when none of
the nodes is malicious.

• x: The estimated value of x returned by the detection method xGet().

Pseudocode for the defensive adaptation algorithm is given in Figure 6.11.

6.4 Dynamic Adaptation Algorithm

Now we present the Dynamic Adaptive Algorithm that allows a node to

maintain its local view of the membership, and that also detects and de-

fends against malicious nodes. The Dynamic Adaptive Algorithm uses the

Distribute() method, described in Section 6.4.3, to distribute join messages,

request messages, and metadata messages.

For both a requesting node and a source node, the Dynamic Adaptive

Algorithm finds the intersection estimator IE, and then calculates n and m. If

the node is a requesting node, the algorithm then estimates x, the proportion

of non-malicious nodes in its view. It then adjusts the number r of nodes

to which a request is distributed. Next, the algorithm calculates the churn
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estimator CE, and finally it adjusts the rate rmr of distributing metadata

and request messages.

6.4.1 Parameters and Variables

The parameters and variables for the Dynamic Adaptive Algorithm are

defined as follows:

• rmrMax: The maximum rate at which a node is allowed to distribute

requests or metadata.

• kMax: The upper bound on the number k of matches.

• c: The weighting factor of the EWMA() method used for the unnormal-

ized observed probabilities.

• d: The number of requests in the initial transient for the EWMA()

method.

• view: A node’s current view of the membership.

• n: The size of the node’s current view.

• m: The number of nodes in a source node’s view to which it distributes

metadata, i.e., m = 2
√
n nodes.

• r: The number of nodes in a requesting node’s view to which it dis-

tributes requests, i.e., r = 2
√
n initially and subsequently is calculated
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using rGet() in order to achieve the same match probability as when

x = 1.0.

• rmr: The node’s rate of distributing requests (metadata), i.e., the num-

ber of times a node sends a request (metadata) message to r (m) nodes

per time unit.

• x: The estimated proportion of non-malicious nodes in a node’s view,

where x = 1.0 initially and subsequently is calculated using xGet(), i.e.,

1− x is the estimated proportion of malicious nodes in the node’s view.

• xPrev: The previous value of x.

• O: The unnormalized observed probability array used in the EWMA()

method.

• prevO: The previous unnormalized observed probability array used in

the EWMA() method.

• numNodes: The number of nodes to which a node sent its message,

including first and possibly second tries.

• numMatches: The number of nodes that report matches to a requesting

node.

• joined: The number of nodes that a node discovered have joined the

membership since its last message.
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• left: The number of nodes that a node detected have left the membership

since its last message.

• IE: The intersection (I) estimator obtained by random sampling and

defined by:

IE =
numNodes− left

numNodes
(6.1)

The IE estimator is used to estimate n, m and r in I.

• nIE: The estimate of the number of nodes in the intersection I of the

node’s view of the membership and the actual membership.

• mIE: The estimate of the number m of nodes in the intersection I of

the node’s view of the membership and the actual membership.

• rIE: The estimate of the number r of nodes in the intersection I of the

node’s view of the membership and the actual membership.

• CE: The CE estimator, an estimate of the membership churn (leaves

and joins), obtained by random sampling and defined by:

CE =
left+ joined

numNodes
(6.2)

The churn estimator is used to adjust the rate rmr of sending request

and metadata messages.

A node’s view of the membership consists of I + L nodes, but the actual

membership consists of I + J nodes, as shown in Figure 6.7. If a node sends
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its message to one of the L (malicious or non-malicious) nodes, then it detects

and removes that node immediately. If the node sends a request to one of the

I nodes and that node is non-malicious and has a match, then the matching

node reports that match. If the node sends a request to one of the I nodes

and that node does not have a match, then that node responds with its newly

joined nodes and no match.

The intersection estimator IE provides an estimate of the intersection I,

i.e., the proportion of nodes from which it receives responses. It is obtained,

using random sampling, by dividing the number of nodes from which the node

receives responses (i.e., numNodes − left) by numNodes. If the algorithm

were to use the hypergeometric distribution in Equation (3.1) using the value

I +L, it might obtain results that are different from those obtained using the

value I+J . Thus, as an approximation, the algorithm uses I as the size of the

node’s current view of the membership. However, a node does not actually

know the value of I. Therefore, the algorithm first estimates the values nIE,

mIE and rIE, using the IE estimator before it applies Equation (3.1) to find

the estimated proportion x of non-malicious nodes.

A node does not choose the newly joined nodes in J to which to send its

message, because it has not yet discovered those nodes. However, other nodes

might be aware of those nodes and might have sent metadata to them. Thus,

again, the results obtained from the hypergeometric distribution in Equation
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(3.1) might be affected. However, a node discovers newly joined nodes quite

quickly, so the effect is small even with high joining rates and we ignore it.

The churn estimator CE provides an estimate of the membership churn

(leaves and joins). It is obtained, using random sampling, by adding left and

joined, and then dividing by numNodes, the number of nodes to which the

node sent its message. The rate rmr of sending metadata and requests is

increased or decreased, depending on the churn estimator CE.

6.4.2 Pseudocode for the Dynamic Adaptation

Algorithm

The pseudocode for the Dynamic Adaptive Algorithm is given in Figure

6.12.

In line 1, a newly joining node gets its initial view of the membership of

size n from a bootstrapping node. In line 2 r, x, xPrev and i are initialized. In

line 3, the algorithm sets the entries of the unnormalized observed probability

array O to zero and, in line 4, it sets numNodes, numMatches, joined and

left to 0. In line 5, the newly joining node distributes a join message to

randomly chosen nodes in its initial view. As a result, it might learn about

newly joined or left nodes and obtain a new view; in line 6, the algorithm

determines the number n of nodes in this new view and, in line 7, it calculates

r, m and rmr.
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DynamicAdaptive(rmrMax, kMax, c, d)

1 view = getBootView(n)

2 r ← 2
√
n; x← 1.0; xPrev ← 1.0; i← 0

3 for (k ← 0 to kMax) do O(k)← 0

4 numNodes← 0; numMatches← 0; joined← 0; left← 0

5 distribute(view, r, numNodes, numMatches, joined, left)

6 n← n+ joined− left

7 r ← 2
√
n; m← 2

√
n; rmr ← 10

8 while (true) do

9 nextT ime← time+ (timeunit/rmr)

10 wait until (time == nextT ime)

11 if (isSourceNode) then

12 distribute(view,m, numNodes, numMatches, joined, left)

13 if (isRequestingNode) then

14 distribute(view, r, numNodes, numMatches, joined, left)

15 prevO ← O

16 O ← EWMA(numMatches, prevO, kMax, c)

17 i← i+ 1

18 IE ← (numNodes− left)/numNodes

19 nIE ← IE × n; mIE ← IE ×m; rIE ← IE × r

20 n← n+ joined− left

21 m← 2
√
n

22 if ((isRequestingNode) and (i >= d)) then

23 x← xGet(O, nIE,mIE, rIE, kMax)

24 if (xPrev == x) then

25 r ← rGet(n,m, 0.9817, x)

26 else xPrev ← x

27 if (isSourceNode) then

28 sendMoreMetadata(view,m,mIE)

29 CE ← (left+ joined)/numNodes

30 if (CE > 1/rmrMax) then

31 rmr ← rmrMax× CE

32 else rmr ← 1

33 numNodes← 0; numMatches← 0; joined← 0; left← 0

Figure 6.12: Pseudocode for the Dynamic Adaptive Algorithm.
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Line 8 starts an infinite loop where, in line 9, nextT ime is set to the

current time plus timeunit/rmr, which is the time when the node sends its

next request and/or metadata message. As time passes, time is automatically

incremented (not shown in the pseudocode); moreover, timeunit is the length

of the time unit. In line 10, the algorithm waits until the current time reaches

the nextT ime.

In line 11, the algorithm checks whether the node is a source node. If so, in

line 12, it calls Distribute() to distribute the node’s metadata message to m

randomly chosen nodes in the node’s view. The Distribute() method returns

numNodes, numMatches, joined, left, and the (possibly new) view of the

membership.

In line 13, the algorithm checks whether the node is a requesting node. If

so, in line 14, it calls Distribute() to distribute the node’s request message to

r randomly chosen nodes in the node’s view. In line 15, the algorithm sets

the previous unnormalized observed probability array prevO to O and then,

in line 16, calls the EWMA() method to calculate the current unnormalized

observed probability array O. In line 17, it increments i.

In line 18, the algorithm calculates the intersection estimator IE for the

proportion of nodes in the node’s current view of the membership and the

actual membership, using random sampling. Then, in line 19, it calculates the

estimates nIE, mIE and rIE of n, m and r in the intersection I. Then, in
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line 20, the algorithm updates n based on the current values of n, joined and

left and, in line 21, it sets m to 2
√
n.

In line 22, the algorithm checks whether the node is a requesting node and

whether i is greater than or equal to d, the initial transient after which it starts

to make estimates of x. If so, in line 23, the algorithm calls xGet() to estimate

the value of x.

In line 24, the algorithm checks whether xPrev is equal to the current x

(i.e., whether it has encountered two identical estimates of x before it changes

the value of r). If so, in line 25, the algorithm calls rGet() to update the value

of r. Otherwise, in line 26, it sets xPrev to the current x.

In line 27, the algorithm checks whether the node is a source node. If so, in

line 28, it checks how many of the nodes to which it previously sent metadata

have now left, and distributes its previously distributed metadata to that many

more nodes, to increase the number of nodes holding the metadata up to mIE

nodes.

In line 29, the algorithm calculates the churn estimator CE using the values

of left, joined and numNodes it obtained in the loop. Then, in line 30 to line

32, the algorithm calculates the value of rmr for the next time step, using the

value of CE. In line 33, the algorithm sets numNodes, numMatches, joined

and left to 0 before it goes back to line 7 to repeat these steps indefinitely.
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6.4.3 Distribute Method

The Distribute() method is used to distribute join messages, request mes-

sages, and metadata messages to rm nodes. This method makes two attempts

to distribute a message to randomly chosen nodes in a node’s view, in order

to receive rm responses. From those responses, or the lack thereof, the node

learns about newly joined and left nodes, and updates its view accordingly.

The variables for the Distribute() method are defined as follows:

• try: The number of times that a node sends its message, in an attempt

to receive responses from rm nodes.

• responses: An array that stores the responses to a message that a node

distributed to randomly chosen nodes in its first or second try.

• responded: The number of nodes that responded to a node’s message in

its first and possibly second try.

• isNew: A boolean that indicates whether the discovered node is actually

a new node or is a node that was already present in the node’s view of

the membership.

The pseudocode for the Distribute() method is shown in Figure 6.13.

In line 1, try and responded are initialized. The loop starting with line 2

is executed once if, on the first try, responded is equal to rm; otherwise, it is

executed twice.
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Distribute(view, rm, numNodes, numMatches, joined, left)

1 try ← 1; responded← 0

2 while ((try <= 2) and (responded < rm)) do

3 responses← sendMessage(view, rm− responded)

4 numNodes← numNodes+ (rm− responded)

5 if (try == 1) then first← 0; last← rm− 1

6 else first← rm; last← rm+ (rm− responded)− 1

7 for (j ← first to last) do

8 if (responses[j].noResponse) then

9 removeNode(view, responses[j].node)

10 left← left+ 1

11 else

12 responded← responded+ 1

13 if (responses[j].newJoin) then

14 isNew = addNode(view, responses[j].newNode)

15 if (isNew) then

16 joined← joined+ 1

17 if (responses[j].hasMatch) then

18 numMatches← numMatches+ 1

19 try ← try + 1

Figure 6.13: Pseudocode for the Distribute() method.

In line 3, the node sends its message to rm− responded nodes, and waits

for the responses from those nodes. In line 4, the algorithm sets numNodes to

numNodes+ (rm− responded). In line 5 and line 6, the algorithm sets first

and last for try = 1 and try = 2. When try = 1, the message is sent to rm

nodes. When try = 2, the message is sent to the number of nodes that failed

to respond when try = 1. Then, in line 7, the algorithm iterates through the

responses vector. In line 8, the algorithm checks whether the node received

a response from node j. If not, in line 9, it removes the non-responsive node

from the node’s current view and, in line 10 it increments left. Otherwise
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(line 11), in line 12, it increments responded. Then, in line 13, the algorithm

checks whether j’s response contains a newly joined node. If so, in line 14,

it calls addNodes() to add the newly joined node to the node’s view. The

method addNode() returns a boolean isNew to indicate that the newly joined

node is indeed new and not already present in the node’s view. In line 15, the

algorithm checks whether isNew is true and, if so, in line 16, it increments

joined. In line 17, the algorithm checks whether j’s response contains a match

and, if so, in line 18, it increments numMatches.

In line 19, the algorithm increments try, and control then returns to the

while loop in line 2 to determine whether try is less than or equal to 2 and

responded is less than rm. If so, the algorithm goes through the while loop

again.

6.5 Performance Evaluation

6.5.1 Experimental Methodology

To evaluate the Dynamic Adaptive Algorithm, we performed experiments

using a simulation of iTrust. In the simulation, we can control the rates at

which nodes join and leave the membership, which a real-world deployment

would not allow us to do. Moreover, in the simulation, we can compare a

node’s current view of the membership against the actual membership, and
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we can compare the estimated proportion of malicious nodes against the actual

proportion of malicious nodes.

In the simulation program, first the number N of nodes in the actual

membership is initialized to N = 1024. The program adds all of the nodes in

the actual membership to each node’s view, so that each node has the complete

initial membership and n = 1024. Then, at each time step, some nodes join

the membership, leave the membership, distribute metadata messages, and

distribute request messages. Moreover, some nodes might behave maliciously,

by not responding to a request with a match when they do have a match.

When a node joins the membership, it obtains the values of n, rmrMax,

kMax, c and d. In the simulation, we set rmrMax = 30, kMax = 15, c = 0.97

and d = 40, which we have determined by experimentation.

We investigate the effectiveness of the Dynamic Adaptive Algorithm by

considering two extended scenarios, each consisting of five individual scenarios.

In the first extended scenario, we consider different values of JR = LR with

a fixed value of X, namely, X = 0.6, i.e., with a relatively high proportion

of malicious nodes, namely, 1 − X = 0.4. In the second extended scenario,

we consider different values of X with fixed values of JR and LR, namely,

JR = LR = 300, i.e., with high joining and leaving rates.

In the simulation, a time unit comprises 300 time steps. If JR = LR = 300,

for example, one node joins and one node leaves at each time step. In this
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example, if rmr = 10, a node distributes a metadata message or a request

message (or both) every 30 time steps.

6.5.2 Performance Metrics

The performance metrics for the Dynamic Adaptive Algorithm are as fol-

lows:

• JND: The joins not discovered, i.e., the proportion of newly joined

nodes in the actual membership that a node has not discovered have

joined the membership at a particular time, defined by:

JND =
J

I + J
(6.3)

• LND: The leaves not detected, i.e., the proportion of leaving nodes in

a node’s view that the node has not detected have left the membership

at a particular time, defined by:

LND =
L

I + L
(6.4)

• MA: The membership accuracy, i.e., the number of nodes in a node’s

view that are also in the actual membership divided by that number of

nodes plus the number of leaving nodes not detected plus the number of

joining nodes not discovered, defined by:

MA =
I

I + L+ J
(6.5)
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• MP : The match probability of one or more responses for a request,

averaged over all requesting nodes.

• RT : The response time for a request, from the time that a request-

ing node starts distributing its request message to other nodes until it

finishes receiving their responses, including responses for the first and

second tries, averaged over all requesting nodes.

• MC: The message cost per node per time unit, calculated as an average

over all nodes over time.

6.5.3 Varying JR and LR

First, we consider the extended scenario in which JR and LR vary and

X = 0.6. This extended scenario comprises the following five scenarios:

• Scenario 1: JR = LR = 0 for time 0 to 20,000

• Scenario 2: JR = LR = 10 for time 20,000 to 40,000

• Scenario 3: JR = LR = 50 for time 40,000 to 60,000

• Scenario 4: JR = LR = 100 for time 60,000 to 80,000

• Scenario 5: JR = LR = 300 for time 80,000 to 100,000.

Figure 6.14 shows the graphs of JND, LND, x, r, rmr, MA and MP for

these five scenarios.
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Figure 6.14: Graphs of JND, LND, x, r, rmr, MA and MP for the Dy-
namic Adaptive Algorithm, where JR and LR vary and X = 0.6.

In the extended scenario, JR and LR increase from 0 to 10 to 50 to 100

and then to the high rate of 300. The values of JND remain quite low,

but the values of LND increase steadily, starting at 0 when LR = 0 and

reaching 0.1472 when LR = 300, because the node cannot detect leaving nodes

sufficiently rapidly.

As JR and LR (and hence JND and LND) increase, the chi-squared

method’s estimate of the proportion x of non-malicious remains close to the

actual value X = 0.6. The defensive adaptation algorithm increases the num-
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JR = LR 0 10 50 100 300 Mean
MA 1.0000 0.9590 0.9190 0.8917 0.8234 0.9059
MP 0.9758 0.9791 0.9761 0.9752 0.9753 0.9764
RT 6.0169 11.2556 11.3719 11.3451 11.3984 10.9300
MC 0.6541 1.8480 4.0174 5.6518 9.4487 4.3240

Table 6.1: Varying JR and LR with X = 0.6. The columns labeled 0, 10,
50, 100, 300 contain the mean values of MA, MP , RT and MC for the given
scenarios and the last column contains the mean values over all five scenarios.

ber r of nodes to which the requesting node distributes its request from 99.1289

in scenario 1 to 129.6163 in scenario 5.

As JR and LR increase, the churn estimator CE increases, which causes

the algorithm to increase rmr, reaching 11.0787 in scenario 5, so that the node

discovers joining nodes and detects leaving nodes more rapidly.

Table 6.1 shows the mean values of MA, MP , RT and MC for each of

the five scenarios and finally over all five scenarios. The mean membership

accuracy MA decreases as JR and LR increase, because a node can not detect

leaving nodes rapidly enough when LR is much higher than the rate rmr of

distributing request and metadata messages. Nevertheless, the mean value of

MA over all five scenarios is 0.9059, which is quite good. Likewise, the overall

mean value of MP for all five scenarios is high (0.9764), which is close to the

analytical expectation (0.9817).

The response time RT for the first scenario is much less than that of the

other scenarios, because no nodes are joining or leaving the membership and,

thus, a requesting node obtains responses from all of the nodes on its first try.

In the other four scenarios, the requesting node sends its request message to
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additional nodes to compensate for nodes detected to have left. The response

times for these four scenarios are quite similar, and the mean value of RT for

all five scenarios is 10.9300.

Finally, as JR and LR increase, more nodes are discovered to have joined

and detected to have left the membership, increasing CE and thus rmr, which

results in an increase in the message costMC. However, the overall mean value

of MC for all five scenarios is 4.3240, which we consider to be reasonable.

6.5.4 Varying X

Next, we consider the extended scenario in which X varies and JR = LR =

300. The extended scenario comprises the following five scenarios:

• Scenario 1: X = 1.0 for time 0 to 20,000

• Scenario 2: X = 0.8 for time 20,000 to 40,000

• Scenario 3: X = 0.6 for time 40,000 to 60,000

• Scenario 4: X = 0.4 for time 60,000 to 80,000

• Scenario 5: X = 0.2 for time 80,000 to 100,000.

Figure 6.15 shows the graphs of JND, LND, x, r, rmr, MA and MP for

these five scenarios.

In the extended scenario, X decreases from 1.0 to 0.8 to 0.6 to 0.4 to 0.2,

i.e., the proportion 1 −X of malicious nodes increases from 0.0 to 0.2 to 0.4
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Figure 6.15: Graphs of JND, LND, x, r, rmr, MA and MP for the Dy-
namic Adaptive Algorithm, where X varies and JR = LR = 300.

to 0.6 to the high proportion of 0.8. The values of JND remain relatively low,

and the values of LND decrease from 0.1887 in scenario 1 to 0.1790, 0.1476,

0.1174 and 0.0863 in scenario 5, as a result of increasing r.

As the number of malicious nodes increases, the requesting node receives

fewer matches, and the chi-squared estimate x decreases from 0.9969 in sce-

nario 1 to 0.8642, 0.5925, 0.3955 and 0.2039 in scenario 5. These reductions

in x cause the defensive adaptation algorithm to increase r from 66.2033 in

scenario 1 to 78.9022 to 129.7150 to 193.5547 to 278.5190 in scenario 5, in or-
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der to maintain a high match probability. As r is increased, a requesting node

discovers newly joining nodes and detects leaving nodes and, thus, updates its

view of the membership, which causes LND to decrease and MA to increase.

As r increases, CE decreases, which causes the algorithm to reduce rmr

from 13.8222 in scenario 1 to 13.0271 to 11.0930 to 9.4167 to 7.6008 in scenario

5, in order to reduce the message cost. Contrast the behavior here, with

increasing X and constant JR = LR = 300, increasing r and decreasing rmr,

with the behavior in Figure 6.14, with increasing JR and LR and constant

X = 0.6, resulting in nearly constant x and increasing rmr.

The match probability MP remains high for the first three scenarios but

tends to fluctuate more in scenarios 4 and 5. When X is low, there are few

nodes that report a match, resulting in a low match probability. Because rmr

is much lower than LR, a source node cannot detect leaving nodes rapidly

enough. Thus, there is a period when some of the nodes that hold the metadata

leave the membership but the source node has not yet updated its view and

re-distributed the metadata to more nodes. Thus, a node that makes requests

in this period has a lower match probability. Later, after the source node

updates its view, it re-distributes its metadata to more nodes, in order to

increase the match probability. Also interesting is the brief period in which

MP is significantly reduced following the transition from X = 0.4 to X = 0.2.

This reduction occurs because the defensive adaptation algorithm has not yet
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X = 1.0 0.8 0.6 0.4 0.2 Mean
MA 0.7767 0.7852 0.8197 0.8519 0.8802 0.8228
MP 0.9880 0.9795 0.9750 0.9632 0.9546 0.9720
RT 11.4259 11.5419 11.3971 11.2291 11.0286 11.3246
MC 6.4595 7.1495 9.4751 11.6760 13.6993 9.6919

Table 6.2: Varying X with LR = JR = 300. The columns labeled 1.0, 0.8,
0.6, 0.4, 0.2 contain the mean values of MA, MP , RT and MC for the given
scenarios and the last column contains the mean values over all five scenarios.

detected the change and increased r. Similar but smaller reductions also occur

at the transitions from X = 0.8 to X = 0.6 and from X = 0.6 to X = 0.4.

Note also that in scenario 5, the graph of the estimate x is very flat.

The reason is that the normalized analytical probability curve for X = 0.2

is sufficiently different from the curves for X = 0.4, 0.6, 0.8, 1.0, as shown in

Figure 6.8. Thus, in the case X = 0.2, the algorithm seldom makes a mistake

when it uses the chi-squared method.

Table 6.2 shows the mean values of MA, MP , RT and MC for each of

the five scenarios and finally over all five scenarios. The mean membership

accuracy MA increases as X decreases, because the algorithm increases r as

X decreases. When r is high, a requesting node detects leaving nodes and

discovers newly joined nodes and, thus, updates its view of the membership.

The overall mean value of MA for all five scenarios is 0.8228, which is quite

good. On the other hand, the mean match probability MP slightly decreases

as X decreases. However, the overall mean value of MP for all five scenarios

is still quite high (0.9720).
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The response time RT is about the same for all five scenarios, with a

overall mean value of 11.3246 for all five scenarios. Finally, the message cost

MC increases as X decreases and, thus, r increases. However, the overall

mean value of MC for all five scenarios is 9.6919, which we consider to be

reasonable.

6.5.5 Effectiveness of the Dynamic Adaptive Algorithm

Overall, these experiments demonstrate that the Dynamic Adaptive Algo-

rithm is effective in detecting leaving nodes, discovering newly joining nodes,

and estimating the proportion of non-malicious (and, thus, malicious) nodes.

When the actual proportion X of non-malicious nodes increases or de-

creases, the Dynamic Adaptive Algorithm finds the estimated proportion x of

non-malicious nodes. The estimate x is close to the actual value of X, even

when JR and LR increase to 300 and are thus much higher than the rate

rmr of distributing request and metadata messages. Using x, the algorithm

then adjusts the number r of nodes to which a requesting node distributes

its request, which enables the algorithm to maintain a high match probability

even when some of the nodes are malicious.

Moreover, when JR and LR are high, the Dynamic Adaptive Algorithm

increases the rate rmr of distributing request and metadata messages so that a

node discovers joining nodes and detects leaving nodes more rapidly, to obtain

a high membership accuracy and a high match probability. On the other hand,
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when JR and LR are low, the Dynamic Adaptive Algorithm decreases rmr,

to maintain a reasonable message cost.

Thus, the Dynamic Adaptive Algorithm adjusts r and rmr appropriately

to obtain a reasonable membership accuracy and a high match probability,

while still maintaining a reasonable message cost.

6.6 Summary

In this chapter, we have described a Dynamic Adaptive Algorithm for

iTrust, that maintains a node’s local view of the membership and that protects

iTrust against malicious nodes. The algorithm uses random sampling and

statistical inference to estimate metrics that are not directly observable in

the distributed system. Experimental results demonstrate that the algorithm

works well when the membership has a lot of churn, when the membership is

stable, and when the membership has a lot of malicious nodes.
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Chapter 7

Conclusions and Future Work

This Ph.D. Dissertation addresses a distributed information publication,

search and retrieval system, named iTrust, with no centralized mechanisms

and no centralized control. It presents statistical algorithms for detecting and

defending against malicious attacks in iTrust, and adaptive membership man-

agement algorithms for iTrust in the presence of membership churn. Finally,

it combines these statistical inference and dynamic adaptation algorithms to

manage both membership churn and malicious nodes in iTrust. In this chapter,

we summarize the specific contributions and present possible future work.

7.1 Trustworthy Distributed Search and

Retrieval

In Chapter 3, we presented the iTrust system, a novel information pub-

lication, search and retrieval system with no centralized mechanisms and no

centralized control. iTrust involves distribution of metadata and requests,
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matching of requests and metadata, and retrieval of information correspond-

ing to the metadata. The iTrust system is particularly valuable for individuals

who wish to share information, without having to worry about subversion or

censorship of information. The very existence of iTrust can help deter at-

tempts to subvert conventional Internet search mechanisms, and can provide

assurances to individuals that the information they seek will be available to

them.

Our contributions include:

• Implementation of the iTrust distributed publication, search and re-

trieval system for the Internet with no centralized mechanisms and no

centralized control.

• Evaluation of iTrust which shows that for appropriate choices of the

parameters, the probability of matching a query is high, even if some of

the participating nodes are subverted or non-operational.

In future work, we plan to investigate the efficiency, scalability, and reli-

ability of the iTrust system in Emulab. We also plan to investigate different

classes of nodes, effects of geographical locations, and network and processing

loads. In addition, we plan to investigate the scalability of iTrust to thousands

of nodes and to extrapolate those results to millions of nodes. Furthermore,

we plan to evaluate the ease of installation and use of iTrust with various user

populations.
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In the future, we also plan to apply the ideas of iTrust presented in this

Ph.D. Dissertation to social networks, so that a user has the freedom to share

his/her files, such as photos, directly with others without going to a centralized

administrator. Similarly, we plan to apply the ideas of iTrust to a music

library search engine, so that a musician or performer can share his/her work

in a music network and make his/her performances more dynamic and more

diverse.

7.2 Protecting against Malicious Attacks in

iTrust

In Chapter 4, we presented novel statistical algorithms for detecting and

defending against malicious attacks in the iTrust information retrieval network.

These algorithms employ the exponential weighted moving average method

and the chi-squared test to calculate the empirical probabilities for the numbers

of responses to a request. The detection algorithm compares the normalized

empirical probabilities against the normalized analytical probabilities for the

numbers of matches, to estimate the proportion of nodes that are subverted

or non-operational. The defensive adaptation algorithm increases or decreases

the number of nodes to which the requests are distributed, to maintain a high

probability of a match. Extensive experimental evaluations demonstrate the
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effectiveness of the algorithms for detecting malicious attacks and defending

against them.

Our contributions include:

• Recognition that multiple responses to a request provide valuable infor-

mation about the network that is difficult to obtain directly from the

nodes, and use of the multiple responses to estimate the proportion of

non-operational or subverted nodes.

• Demonstration that in iTrust, individual nodes can detect a potential

malicious attack, and can adapt to an attack to maintain trustworthy

distributed search and retrieval even when the network is under attack.

• Statistical inference techniques such that the nodes can infer the char-

acteristics of the network that are not measurable directly. In other

words, the nodes infer useful information about the network by local

observations of the behaviors of the nodes.

In future work, we plan to investigate other kinds of malicious attacks on

iTrust and to develop other detection and defensive adaptation algorithms to

handle such attacks. We also plan to scale the number of nodes in the iTrust

network to millions of nodes. Such scaling requires that each node is aware of

only a small neighborhood of the nodes in the network and that the metadata

and the requests are forwarded from one neighborhood to another.
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7.3 Membership Management for iTrust

In Chapter 5, we presented membership algorithms for the iTrust infor-

mation retrieval network. The membership algorithms for iTrust allow each

member to maintain its own local view of the membership, and to keep that

local view close to the actual membership. A node that receives a request

sends to the requesting node a response that contains newly joined member(s)

in its local view of the membership. The node also sends in its response the

URL of the document, if the keywords in the query match metadata that it

holds.

A requesting node discovers newly joining nodes from the responses it

receives to its requests. Likewise, a requesting node detects leaving (non-

operational) nodes when it does not receive responses from those nodes before

a timeout occurs, or when it receives an error code from TCP.

As our simulations demonstrate, for appropriate values of the parameters,

particularly for the Combined Adaptive Membership Protocol, the member-

ship accuracy, response time, and message cost are reasonable, and the match

probability is high. The Combined Adaptive Membership Protocol works well

not only when the membership has a lot of churn but also when the member-

ship is stable.

Our contributions include:
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• Demonstration that each member can maintain its own local view close

to the actual membership, without the use of a consensus algorithm to

achieve an agreed membership.

• Exploitation of messages already required by the iTrust messaging pro-

tocol for search and retrieval, rather than requiring extra messages for

membership.

• Introduction of a churn estimator which is used to adjust a node’s re-

questing rate dynamically.

• Demonstration that the dynamic adaptive membership algorithms are

effective in estimating the churn in several scenarios based on the re-

sponses a node receives to its requests.

In future work, we plan to refine our adaptive membership algorithms to

handle millions of nodes. Such scaling requires that each node is aware of

only a small neighborhood of the nodes in the network. In addition, we plan

to continue our investigation of the performance of the iTrust membership

protocols in other scenarios.
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7.4 Statistical Inference and Dynamic

Adaptation for iTrust

In Chapter 6, we described a dynamic adaptive algorithm for iTrust based

on statistical inference, that maintains a node’s local view of the member-

ship and that protects iTrust against malicious attacks. Experimental results

demonstrate that the algorithm works well when the membership has a lot of

churn, when the membership is stable, and when the membership has a lot of

malicious nodes.

Our contributions include:

• Use of random sampling and statistical inference to infer information that

is not easy to obtain or that is expensive to collect, such as detecting the

proportion of malicious nodes or the size of the membership when the

membership churn is high.

• Dynamic adjustment of the number of nodes to which a requesting node

distributes its requests and dynamic adjustment of the rate of distribut-

ing request and metadata messages to obtain a reasonable membership

accuracy and a high match probability, while maintaining a reasonable

message cost.

• Demonstration of the effectiveness of the dynamic adaptive algorithm in

detecting leaving nodes, discovering newly joining nodes, and estimating
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the proportion of non-malicious and, thus, malicious nodes in the iTrust

membership.

In the future, we plan to apply these statistical inference and adaptation

techniques to other algorithms and applications, such as scheduling algorithms

for many core architectures. We also plan to create other dynamic adapta-

tion algorithms using random sampling and statistical inference for distributed

systems and computer networks, more generally.
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