
Trustworthy Distribution and Retrieval of Information
over HTTP and the Internet

Isaı́ Michel Lombera, Yung-Ting Chuang, Peter Michael Melliar-Smith, Louise E. Moser
Department of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106 USA

imichel@ece.ucsb.edu,ytchuang@ece.ucsb.edu,pmms@ece.ucsb.edu,moser@ece.ucsb.edu

Abstract— This paper describes a novel information distri-
bution and retrieval system, named iTrust, that operates over
HTTP and the Internet and that provides trustworthy access to
information. iTrust is a completely distributed system, with no
centralized mechanisms and no centralized control, that avoids
subversion or censorship of information. Individuals submit
information they wish to share to nodes on the Internet that
distribute metadata to random participating nodes. Likewise,
users submit requests containing metadata for information they
wish to retrieve to random participating nodes. The paper
presents an overview of the iTrust strategy, implementation,
user interface, and performance. iTrust can effectively enable
citizens to distribute and retrieve information over the Internet,
even in the presence of subverted or non-operational nodes.

Keywords-information distribution and retrieval; distributed
search; trustworthy information access; citizen-centric service

I. INTRODUCTION

Our trust in the accessibility of information over the
Internet and the Web (hereafter referred to as the Inter-
net) depends on benign and unbiased administration of
centralized search engines and centralized search indexes.
Unfortunately, the experience of history, and even of today,
shows that we cannot depend on such administrators to
remain benign and unbiased in the future.

To ensure that the distribution and retrieval of information
over the Internet is not subverted or censored, alternative
search mechanisms must be provided. The availability of
multiple search engines is important, but that protection is
weakened by the small number of search engines available
today. An alternative to centralized search, an effective com-
pletely distributed search, without centralized mechanisms
and without centralized control, is an important assurance
to users of the Internet that a small number of administra-
tors cannot prevent them from distributing their ideas and
information, and from retrieving the ideas and information
of others.

The thesis of this research is that the distribution and
retrieval of information without centralized search engines
and without centralized search indexes is a critical enabling
technology for users to have trust in the Internet for access to
information. It is important to ensure that such a trustworthy
information distribution and retrieval system is available

when it is needed, even though a user might normally use
a conventional centralized search engine.

In this paper, we describe iTrust, a novel information
distribution and retrieval system that operates over the Hy-
perText Transfer Protocol (HTTP) and the Internet and that
provides trustworthy access to information. Section II of the
paper presents an overview of the iTrust strategy, Section
III describes our implementation of iTrust based on HTTP,
and Section IV describes the user interface. Performance
results are presented in Section V. Related work, and the
conclusion and future work, are presented in Sections VI
and VII, respectively.

II. OVERVIEW OF ITRUST

The iTrust information distribution and retrieval system
involves no centralized mechanisms and no centralized con-
trol. We refer to the nodes that participate in an iTrust
network as the participating nodes or the membership. An
iTrust network might correspond to participants with specific
interests, or it might correspond to a social network. Multiple
iTrust networks within the Internet may exist at any point in
time, and a node may participate in several different iTrust
networks at the same time.

In an iTrust network, some nodes (the source nodes)
produce information, and make that information available
to other participating nodes. The source nodes produce
metadata that describes their information, and distribute that
metadata to a subset of participating nodes that are chosen
at random, as shown in Figure 1. The metadata are distinct
from the information that they describe, and include a list
of keywords and the URL of the source of the information.

Other nodes (the requesting nodes) request and retrieve
information. Such nodes generate requests (also referred to
as queries) that refer to the metadata, and distribute the
requests to a subset of the participating nodes that are chosen
at random, as shown in Figure 2.

The participating nodes compare the metadata in the
requests (queries) they receive with the metadata that they
hold. If such a node finds a match, which we call an en-
counter, the matching node returns the URL of the associated
information to the requesting node. The requesting node then



Figure 1. A node (a source node) distributes metadata, describing its
information, to randomly selected nodes in the network.

Figure 2. A node (a requesting node) distributes its request to randomly
selected nodes in the network. One of the nodes has both the metadata
and the request and, thus, an encounter occurs.

Figure 3. A node matches the metadata and the request and reports
the match to the requester, which then retrieves the information from the
source node.

uses the URL to retrieve the information from the source
node, as shown in Figure 3.

Distribution of metadata and requests to relatively few
nodes suffices to achieve a high probability that a match
occurs. Moreover, the strategy is robust. Even if some of
the randomly chosen nodes are subverted or non-operational,
the probability of a match is high, as shown in Section
V. Moreover, it is not easy for a small group of nodes to
subvert the iTrust mechanisms to control which information
is delivered and which is suppressed.

III. HTTP IMPLEMENTATION

The current implementation of iTrust uses HTTP to dis-
tribute metadata and requests. Each node is implemented
using PHP (PHP: Hypertext Preprocessor) on an Apache
Web server, thereby allowing any user with a Web browser
on any platform to interact with the node. Node information
is stored locally in an SQLite database. Multiple nodes can
be installed on a single Web server by creating multiple
virtual Web sites; multiple nodes on a single Web server
have separate SQLite databases.

A. Membership

The membership list for a node is stored locally in an
SQLite database table that contains node records whose
fields are the node identifier and the node address. The node
address may be either an IP address or a URL. A node is
not verified when it is added to the membership as there is
no guarantee that a node is always available. For example,
a cell phone or a laptop with a WiFi connection may enter
and leave its base station signal range multiple times a day.
In practice, the only restriction on node addresses is that the
Web site document root has Web server write permissions
for saving uploaded resources.

B. Resources

Resources are files or groups of files uploaded to nodes
in the membership. The list of resources on a node is stored
in an SQLite database table that contains resource records
whose fields are a resource handle, file path, and expiration
date. The resource handle is a shortened random name
(typically with 32-64 characters), which can be referenced
across participating nodes. The file path is the name of
the file on the local node disk. Thus, a participating node
retrieving data may simply request a resource by the handle
to the source node, instead of using the entire file path.
The expiration date specifies when a given resource and
associated keywords should be deleted. It allows time-
sensitive information to be removed automatically from
queries past the expiration date when the information is no
longer relevant. For example, yesterday’s weather forecast
is not included in today’s weather queries.

Resource files can be placed on a node using the Common
Gateway Interface (CGI) by means of a file dialog, or
through the cURL package provided by PHP. In the case of
cURL, the file(s) is fetched directly by the node and written
to the local disk.

When a resource is entered into the SQLite database,
metadata for the resource file is generated using the Apache
Tika/Lucene packages. These packages classify metadata
based on content such as text strings, and file attributes
such as data type, file size, etc. Also, the user may supply
additional metadata keywords. The metadata keywords are
stored in a SQLite database table, and the associations



between a resource and a keyword are stored in a separate
table, thus normalizing the database.

C. Metadata distribution

Periodically, metadata keywords and other information
about one (or more) resources on a node are collated and
compiled into an XML file (also referred to as the metadata
list) which describes the resource. The periodicity depends
on the node and the platform; however, in practice, the
user can update the metadata list at any time by clicking
a button or running a cron job. The resource description in
the metadata list includes the resource handle, file path, and
expiration date for the resource. The metadata list includes
all associated keywords for the resource.

After creation of the metadata list, random nodes in
the membership are contacted and informed of a metadata
update by means of an HTTP POST statement. The number
of random nodes that are selected for metadata distribution
is a tunable parameter in the iTrust node configuration file.
The contact message includes the source node IP address
and metadata list URL, which are stored on the receiving
node. Each contacted node decides if and when to retrieve
the metadata list. The retrieval period is receiving node
dependent, so as not to trigger an instant download of the
metadata list file by multiple nodes.

If a retrieval occurs, the receiving node retrieves the
metadata list file from the source node and processes the
XML. The metadata list is stored on the receiving node. If
there are multiple resources represented by sets of metadata
in the metadata list, then processing continues on the next
set of metadata, until the end of the metadata list is reached.
XML processing is performed using the SimpleXML PHP
extension.

D. Query relaying

Search queries (requests) are the main interaction between
the user and an iTrust node and, as such, require the most
processing. A search query originates at a single node, but
the query message may be relayed among multiple nodes in
the iTrust network. A query message may take any available
network path with the sole restriction that a node never
relays the same query twice.

The query field is a simple HTML form text box on the
current node; the command to begin the query is detection of
pressing a submit button or enter key. The query text itself
is URL encoded to facilitate later operations; no custom
processing on the query text (e.g., duplication detection,
grammar checking, etc.) is performed.

Two additional variables are created before a node sends
the query: the node IP address and the query identifier. The
node IP address is read from the iTrust configuration file;
it ensures that queried nodes know which node originally
sent the query. The query identifier ensures that no query is

relayed twice and helps manage multiple queries sent from
a single node.

Once the query is ready to be sent, multiple random nodes
are selected from the node database table and the query is
packaged into an HTTP POST statement. The frequency of
node selection is another customizable iTrust configuration
variable and need not be the same at different nodes. Node
selection for querying is not necessarily the same as node
selection for metadata list distribution; both variables may
be set by the administrator of the node.

A node sends the HTTP POST statement to random nodes,
and each node (both sender and receivers) saves a copy
of the query before processing. If any text in the query
matches the metadata keywords, an encounter occurs. The
queried node then sends an HTTP POST response back to
the originating node. The originating node is obtained from
the sender node’s IP address given in the query package.
The response includes the query identifier (again obtained
from the query package), the encountered node’s IP address
(hereafter referred to as the source node), and the resource
handle of the matching resource. Additionally, the querying
node saves the response in an SQLite database table for later
processing.

A queried node, regardless of whether or not it has an
encounter, may relay the query as if it were the originating
query node. The only difference is that it does not recreate
the two additional variables (source IP address and query
identifier); those variables are relayed without modification.
However, before relaying the query, the node checks the
query identifier to ensure that the node has not already seen
the query. If the node has already saved the query identifier,
it does not relay the message.

Note that the current node in this context may be either
the node sending the query or the node receiving the query.
In case the receiving node has not yet relayed the query,
it relays the query to nodes randomly selected from the
membership and records the query identifier. In case the
receiving node has already relayed the query, the receiving
node ignores the query. Because of the decentralized random
nature of iTrust, the original node that sent the query might
have the same query relayed back to itself. In this case too,
the current node ignores the query.

After waiting for responses a certain amount of time, the
querying node displays all of the source nodes with appro-
priate resource handles. All encounters are thus recorded on
the querying node, and the user is informed of which nodes
have resources matching the query.

E. Retrieving resources

All query results are recorded in the requesting node’s
SQLite database table, i.e., the source node IP address and
resource handle. When the user selects a query result, the
source node is sent an HTTP GET statement with the
resource handle, and the source node returns the resource



file directly to the user. Alternatively, the source address
and resource handle can be encoded directly into a URL;
the user then accesses the file using an HTML anchor tag.

IV. USER INTERFACE

The iTrust user interface is a Web-based interface where
the user can both administer and query the nodes through
Web pages. Query results from multiple nodes are presented
in a single Web page following a query. Node administration
and user queries are separated into distinct Web pages to
keep tasks distinct and easily manageable.

A. Node administration

The user may change the membership, add source nodes,
distribute metadata, and perform other administration tasks
through the administration interface shown in Figure 4.

A node is added to the membership by entering the
node IP address or URL on a comma delimited list inside
an HTML form text box. Double listing is not permit-
ted; duplicates are removed from the list. However, mul-
tiple nodes are permitted as long as the Web site docu-
ment root is distinct (e.g., both www.example.com/foo and
www.example.com/bar are allowed).

Figure 5 shows the resource insertion Web page. A
resource is added to a node by means of an HTML form file
control; this control permits the user to upload a file from
his/her local machine. Alternately, a Web site URL can be
specified, and the node then fetches the contents at that URL.
The uploaded contents are post-processed, using the Apache
Tika/Lucene package, to generate descriptive metadata (i.e.,
keywords) automatically. The user can customize several
parameters for metadata creation, including indexing by file
raw content (literal text strings) or file meta content (file
size, type, etc.). In addition to automatic metadata creation
for an uploaded resource, the user may add new keywords
or remove existing keywords. Finally, the user may assign
an expiration date to the resource.

Administration tasks also include file administration func-
tions to allow the user to setup, restore, or reset iTrust nodes
easily. Clearing the membership, deleting all resources and
metadata associations, and resetting a node to its initial setup
state can all be done with a single button click. The task
of pushing all metadata changes to random nodes is also
accomplished with a single button click.

B. User queries

The user may perform queries, view the query results, and
obtain resources through the user interface.

Querying is done through a single HTML form text
box, whereupon the query is registered on the node and
distributed throughout the iTrust network. The user is shown
a status/wait Web page while the query is relayed among
nodes; a result Web page is shown after a wait page timeout.
The default timeout is 3 seconds and, thus, a query incurs

Figure 4. The administration interface.

Figure 5. The insert resource Web page.

Figure 6. The query results Web page.

a 3 second latency between initialization of the query and
display of the query results. However, the wait page timeout
is also configurable by the node administrator.

Figure 6 shows the query results displayed on a new Web
page (the wait page automatically redirects to the new page)



in a simple HTML list. Each encounter is shown as a list
item with the source address and resource handle encoded
into a single URL.

The user may click the URL to retrieve the resource
file; the format of the file is the originally uploaded format
(there is no MIME-type modification). If the Web browser
recognizes the file type, it handles the data accordingly;
otherwise, it calls the operating system to open the data file.

C. User settings

For querying, the three primary user settings (which the
user sets on the user settings page) are the number of nodes
to which the metadata are distributed, the number of nodes to
which the requests are distributed, and the search duration.

The number of nodes to which the metadata are distributed
and the number of nodes to which the requests are distributed
must, of course, be less than the number of participating
nodes in the membership.

The search duration refers to the lifetime that a search
query exists. The user may specify how many days a query
will be stored in the database. When a user initiates a query,
the system adds its creation time to the database. Later, when
the user initiates a new query, the system checks and deletes
expired queries from the database.

These user settings apply to the entire duration of a search
session. The search session starts when a user accesses the
search Web page and ends when the user exits the browser
window or tab. The PHP session functions are used to
automate this process.

V. PERFORMANCE EVALUATION

If a node receives a request and it holds metadata that
matches the request, we say that the node has a match. In
the performance evaluation, we consider the probability of
a match, using both analysis and simulation based on our
HTTP implementation. We assume that all of the partici-
pating nodes have the same membership set. In addition,
we assume that the Internet is reliable and that all of the
participating nodes have enough memory to store the source
files and the metadata.

A. Analysis

In an iTrust network with a membership of n nodes, we
distribute the metadata to m nodes and the requests to r
nodes. The probability p that a node has a match then is:

p = 1−
(
n−m

n

)(
n−m− 1

n− 1

)
. . .

(
n−m− r + 1

n− r + 1

)
(1)

Formula 1 holds for n ≥ m+ r. If m+ r > n, then p = 1.
As above, we distribute the metadata to m nodes and the

requests to r nodes in an iTrust network with a membership
of n nodes. But now we introduce another variable x, which
represents the proportion of the n nodes that are operational.
In an iTrust network with a membership of n nodes, where

x nodes are operational, the probability p that a node has a
match is:

p = 1−
(
n−mx

n

)(
n−mx− 1

n− 1

)
. . .

(
n−mx− r + 1

n− r + 1

)
(2)

Formula 2 holds for n ≥ mx + r. If mx + r > n, then
p = 1.

Figures 7, 8, and 9 show the probability p of a match
obtained from Formulas 1 and 2 with n = 72 nodes where
x = 100%, 80%, and 60% of the participating nodes are
operational, respectively, as a function of m = r (the
number of nodes to which the metadata and requests are
distributed). As we see from the graphs, the probability p
of a match increases and asymptotically approaches 1, as
m = r increases.

B. Simulation

Using our HTTP implementation described in Section
III, we performed simulation experiments to validate the
analytical formulas given above. In our simulation, we used
libCURL (which is a free client-side URL transfer library
for transferring data using various protocols) to collect the
match probabilities.

Before we run our simulation program, we delete all
resources and data from the SQLite databases. Next, the
program adds all the nodes to the membership. Once all
the nodes are added to the membership, we supply the
number of nodes for distribution of metadata and requests,
and the proportion of operational nodes, to the simulation
program. Next, we call the source nodes to upload files and
the program then creates the corresponding metadata. Then,
the program randomly selects the nodes for metdata distri-
bution and distributes the metadata to those nodes. Next,
the program randomly selects the nodes for the requests
and distributes the requests. If one or more nodes returns
a response, there is a match and the simulation program
returns 1; otherwise, there is no match and the simulation
program returns 0.

Figures 7, 8, and 9 show the simulation results with 72
nodes where 100%, 80%, and 60% of the participating nodes
are operational, respectively. As we see from these graphs,
the simulation results are very close to the analytical results
calculated from Formulas 1 and 2 where 100%, 80%, and
60% of the participating nodes are operational.

The lesson we learned from this performance evaluation
is that iTrust retains significant utility even in the case where
a substantial proportion of the nodes are non-operational.

VI. RELATED WORK

Today, centralized search engines are used commercially
for Internet search, where metadata for the information
are held in a centralized search index [2]. Requests are
submitted to the central site, where they are matched against



Figure 7. Match probability vs. number of nodes for distribution of
metadata and requests in a network with 72 nodes where 100% of the
nodes are operational.

Figure 8. Match probability vs. number of nodes for distribution of
metadata and requests in a network with 72 nodes where 80% of the
nodes are operational.

Figure 9. Match probability vs. number of nodes for distribution of
metadata and requests in a network with 72 nodes where 60% of the
nodes are operational.

the metadata keywords. Centralized search engines are ef-
ficient and scalable, but are vulnerable to manipulation by
administrators. Similarly, the centralized publish/subscribe
approach uses a centralized search index [5], where all of
the information and all of the queries are published. The
centralized publish/subscribe approach has the same issues
of trust as the centralized search engine approach.

Mischke and Stiller [11] provide a taxonomy of dis-
tributed search mechanisms in peer-to-peer networks. Risson

and Moors [12] provide another useful survey of distributed
search mechanisms in such networks. The distributed pub-
lish/subscribe approach is categorized as either structured or
unstructured.

The structured approach [1], [8], [10], [14] requires the
nodes to be organized in an overlay structure, based on
Distributed Hash Tables (DHTs), trees, rings, etc. The
structured approach is more efficient than the unstructured
approach, but it involves administrative control and addi-
tional overhead for constructing and maintaining the overlay
network. Moreover, churn or malicious disruptions can break
the structure.

The unstructured approach [4], [6], [7], [9], [15], [16],
[17], [19] is typically based on gossiping, uses randomiza-
tion, and requires the subscriber nodes and the publisher
nodes to find each other by exchanging messages over exist-
ing links. The iTrust system uses the unstructured approach.

Gnutella [7] is the great grandfather of unstructured
distributed search systems; it uses flooding of requests to find
information. GIA [3] is an unstructured Gnutella-like peer-
to-peer system that combines biased random walks with one-
hop data replication to make search more scalable. Likewise,
Sarshar et al. [13] combine random walk data replication
with a two-phase query scheme in a Gnutella-like network
for scalability. Yang and Garcia-Molina [18] use supernodes
to improve efficiency, but reintroduce some of the trust risks
of centralized strategies in doing so.

Freenet [4] is a more sophisticated and efficient system
than Gnutella, because it learns from previous requests. In
Freenet, nodes that successfully respond to requests receive
more metadata and more requests. Thus, it is easy for
a group of untrustworthy nodes to conspire together to
gather most of the searches into their group, making Freenet
vulnerable to subversion.

Ferreira et al. [6] use a random-walk strategy in an
unstructured network to replicate both queries and data.
BubbleStorm [15] is a probabilistic system for unstructured
peer-to-peer search that replicates both queries and data,
and combines random walks with flooding. Pub-2-Sub [16]
is a publish/subscribe service for unstructured peer-to-peer
networks of cooperative nodes, that uses directed routing
(instead of gossiping) to distribute subscription and publica-
tion messages to the nodes. None of the above unstructured
systems is particularly concerned with trust, as iTrust is.

Two other systems that, like iTrust, are concerned with
trust are Quasar and OneSwarm. Quasar [17] is a probabilis-
tic publish/subscribe system for social networks with many
social groups. The authors note that “an unwarranted amount
of trust is placed on these centralized systems to not reveal
or take advantage of sensitive information.” iTrust does not
use a structured overlay, and has a different trust objective
than Quasar. OneSwarm [9] is a peer-to-peer data sharing
system that allows data to be shared either publicly or
anonymously, using a combination of trusted and untrusted



peers. OneSwarm is part of an effort to provide an alternative
to cloud computing that does not depend on centralized trust.
Its initial goal is to protect the privacy of the users; iTrust
does not aim to conceal the users like OneSwarm does.

VII. CONCLUSION AND FUTURE WORK

We have described iTrust, a novel information distribu-
tion and retrieval system with no centralized mechanisms
and no centralized control. iTrust involves distribution of
metadata and requests, matching of requests and metadata,
and retrieval of information corresponding to the metadata.
We have shown that, with iTrust, the probability of matching
a query is high even if some of the participating nodes are
subverted or non-operational. The iTrust system is particu-
larly valuable for individuals or citizens who wish to share
information, without having to worry about subversion or
censorship of information.

In the future, we plan to evaluate the ease of installation
and use of iTrust with various user populations and also to
evaluate its reliability and efficiency in PlanetLab. We also
plan to investigate the scalability of the iTrust system to
thousands of nodes and, then, to extrapolate those results
to millions of nodes. In addition, we plan to investigate a
range of possible attacks on iTrust and countermeasures to
such attacks. Our objective for iTrust is a network in which
individual nodes can detect a potential attack, and can adapt
to an attack to maintain trustworthy information distribution
and retrieval even when under attack.

ACKNOWLEDGMENT

This research was supported in part by U.S. National
Science Foundation grant number NSF CNS 10-16193.

REFERENCES

[1] S. Bianchi, P. Felber and M. Gradinariu, “Content-based pub-
lish/subscribe using distributed r-trees,” Proceedings of Euro-
Par, Rennes, France, August 2007, pp. 537–548.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual Web search engine,” Proceedings of the 7th International
Conference on the World Wide Web, Brisbane, Australia, April
1998, pp. 107–117.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S.
Shenker, “Making Gnutella-like P2P systems scalable,” Pro-
ceedings of the ACM SIGCOMM Applications Technologies,
Architectures and Protocols for Computer Communications
Conference, Karlsruhe, Germany, August 2003, pp. 407–418.

[4] I. Clarke, O. Sandberg, B. Wiley and T. Hong, “Freenet:
A distributed anonymous information storage and retrieval
system,” Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, Lecture Notes in Computer
Science, Berkeley, CA, July 2000, pp. 46–66.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui and A. M. Kermar-
rec, “The many faces of publish/subscribe,” ACM Computing
Surveys 35:2, June 2003, pp. 114–131.

[6] R. A. Ferreira, M. K. Ramanathan, A. Awan, A. Grama
and S. Jagannathan, “Search with probabilistic guarantees in
unstructured peer-to-peer networks,” Proceedings of the Fifth
IEEE International Conference on Peer-to-Peer Computing,
Konstanz, Germany, August 2005, pp. 165–172.

[7] Gnutella, http://gnutella.wego.com/

[8] A. Gupta, O. D. Sahin, D. Agrawal and A. El Abbadi, “Megh-
doot: Content-based publish/subscribe over P2P networks,”
Proceedings of the 5th ACM/IFIP/USENIX International Mid-
dleware Conference, Toronto, Canada, 2004, pp. 254–273.

[9] T. Isdal, M. Piatek, A. Krishnamurthy and T. Anderson, “Pri-
vacy preserving P2P data sharing with OneSwarm,” Technical
Report UW-CSE, Department of Computer Science, University
of Washington, 2009.

[10] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger and
R. Morris, “On the feasibility of peer-to-peer Web indexing
and search,” Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems, Lecture Notes in Computer Science
1735, 2003, pp. 207–215.

[11] J. Mischke and B. Stiller, “A methodology for the design of
distributed search in P2P middleware,” IEEE Network 18:1,
January 2004, pp. 30–37.

[12] J. Risson and T. Moors, “Survey of research towards ro-
bust peer-to-peer networks: Search methods,” Technical Report
UNSW-EE-P2P-1-1, University of New South Wales, Septem-
ber 2007, RFC 4981, http://tools.ietf.org/html/rfc4981

[13] N. Sarshar, P. O. Boykin and V. P. Roychowdhury, “Per-
colation search in power law networks: Making unstructured
peer-to-peer networks scalable,” Proceedings of the 4th In-
ternational Conference on Peer-to-Peer Computing, Zurich,
Switzerland, August 2004, pp. 2–9.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for Internet applications,” Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures and
Protocols for Computer Communications, San Diego, CA,
August 2001, pp. 149–160.

[15] W. W. Terpstra, J. Kangasharju, C. Leng and A. P. Buchman,
“BubbleStorm: Resilient, probabilistic, and exhaustive peer-to-
peer search,” Proceedings of the ACM SIGCOMM Conference
on Applications, Technologies, Architectures and Protocols for
Computer Communications, Kyoto, Japan, August 2007, pp.
49–60.

[16] D. A. Tran and C. Pham, “Enabling content-based pub-
lish/subscribe services in cooperative P2P networks,” Com-
puter Networks 52:11, August 2010, pp. 1739-1749.

[17] B. Wong and S. Guha, “Quasar: A probabilistic publish-
subscribe system for social networks,” Proceedings of the 7th
International Workshop on Peer-to-Peer Systems, Tampa Bay,
FL, February 2008.

[18] B. Yang and H. Garcia-Molina, “Improving search in peer-
to-peer networks,” Proceedings of the 22nd IEEE International
Conference on Distributed Computing Systems, Vienna, Aus-
tria, July 2002, pp. 5–14.

[19] M. Zhong and K. Shen, “Popularity-biased random walks for
peer-to-peer search under the square-root principle,” Lecture
Notes in Computer Science 4490, 2007, pp. 877–880.


