
Trustworthy Distributed Search and Retrieval over the Internet

Yung-Ting Chuang, Isaí Michel Lombera, L. E. Moser, P. M. Melliar-Smith
Department of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106 USA

Abstract— This paper describes iTrust, a novel distributed
search and retrieval system that provides trustworthy access
to information over the Internet. Nodes with information to
distribute transmit their metadata to nodes that are selected
at random from a set of participating nodes. Similarly,
nodes seeking information distribute their requests to nodes
that are selected at random from the set of participating
nodes. When a node receives a request, the node tries to
match the metadata in the request with the metadata that
it holds. If the node has a match, it supplies a URL for
the information to the requesting node, which then retrieves
the information from the source node. The paper describes
our implementation of iTrust, and provides a performance
evaluation of iTrust, based on both analysis and simulation
using our implementation. Distribution of metadata and
requests to relatively few nodes suffices to achieve a high
probability of a match.

Keywords: trustworthy distributed Internet search retrieval

1. Introduction
Our modern world relies heavily on the ability to pub-

lish, search for, and retrieve information over the Internet,
which has created a highly distributed information society,
distributed in both the sources of information and the uses
of information. For reasons of efficiency and scalability,
conventional search and retrieval over the Internet employs
centralized search engines.

Unfortunately, centralized Internet search engines can be
tampered with easily by their administrators to bias the
results, concealing or censoring information. The experience
of history, and even of today, indicates that we cannot rely
on centralized Internet search to remain unbiased forever.
Perhaps, the moment at which we are most dependent on our
ability to communicate over the Internet is also the moment
at which centralized Internet search is most likely to be
compromised. It is important to ensure that a trustworthy
distributed search and retrieval system for the Internet is
available when it is needed, even though a user normally
uses a conventional centralized search engine.

The iTrust system, described in this paper, is a novel
distributed search and retrieval system that provides access
to information over the Internet. The iTrust system involves
distribution of metadata and requests, matching of requests
and metadata, and retrieval of information corresponding to

metadata. iTrust has no centralized mechanisms that can be
tampered with easily by a small group of administrators.
iTrust is inevitably more costly in bandwidth, processing and
storage than a centralized search engine. Individuals who are
concerned about a risk of censorship ought to find that cost
acceptable.

The iTrust system is deployed on a set of participating
nodes in the Internet (also referred to as the membership).
iTrust distributes both metadata that describes information,
and requests for information, to a random subset of the
participating nodes in the Internet. Because the metadata
and the requests are distributed to nodes that are chosen
at random from among all of the participating nodes, no
one node or small group of nodes can suppress or censor
information.

In the iTrust system, source nodes produce information
and publish that information to make it available to other
participating nodes. The source nodes create metadata key-
words for their information, and communicate that metadata,
together with a URL, to a subset of the participating nodes
that are chosen at random, as shown in Figure 1.

Requesting (querying) nodes generate requests (queries),
containing metadata keywords for information that they seek
to retrieve. The requesting nodes distribute their requests to
a subset of the participating nodes that are chosen at random,
as shown in Figure 2.

If a participating node receives a request, it compares the
metadata in the request with the metadata that it holds. If
the metadata match, which we call an encounter or a match,
the matching node returns to the requesting node the URL
that the source node included with the metadata, as shown in
Figure 3. The requesting node then uses the URL to retrieve
the information from the source node.

The random distribution of the metadata and the requests
achieves a high probability of a match, even when the
metadata and the requests are distributed to relatively few
nodes. Moreover, the probability of a match remains high
even when some of the participating nodes (even some of the
randomly chosen nodes) are subverted or non-operational.

The rest of this paper is organized as follows. Section 2
describes the implementation of the iTrust system. Per-
formance evaluation results, based on both analysis and
simulation using the iTrust implementation, are presented
in Section 3. Section 4 presents related work, and Section 5
presents conclusions and future work.



Fig. 1: A source node distributes metadata, de-
scribing its information, to randomly selected
nodes in the membership.

Fig. 2: A requesting node distributes its request
to randomly selected nodes in the membership.
One of the nodes has both the metadata and the
request and, thus, an encounter occurs.

Fig. 3: A participating node matches the metadata
and the request and reports the match to the
requester, which then retrieves the information
from the source node.

2. The iTrust System
The iTrust system on a node consists of three distinct com-

ponents that interact with each other to distribute metadata
and requests and to retrieve information (resources). Figure 4
shows the three components: the Web server foundation, the
application infrastructure, and the public interface. Arrows
on connecting lines indicate the direction of information
flow. The following subsections describe these three com-
ponents and their interactions.

2.1 Web Server Foundation
The basis of the current implementation of iTrust is the

Apache Web server compiled with several PHP standard
modules and library extensions. The Web server foundation
component contains no custom code; all software is used
as is, which enables rapid node deployment. iTrust utilizes
various standard modules, including the session and logging
modules described below.

The session module allows tracking of users on each
node, so that multiple users can interact with the same
node at the same time in a convenient manner (i.e., without
having to re-enter the same data on each Web page load).
For example, session variables persist between multiple
Web page fetches and between multiple resource retrievals.
However, all session variables are purely for the convenience
of the user, and a careful user may safely turn off session
tracking (with only a minor inconvenience of re-entering
certain data occasionally). In either case, all session data
are deleted when the session (the Web browser window)
is closed; there is no ability to identify a given user in
subsequent sessions.

The logging module is enabled only for debugging and
simulation, and can be disabled at any time by the node
administrator. There is no direct relationship between the
logging and session functions,i.e., a user’s actions cannot
be tracked simply by viewing access logs (unless, of course,
only one individual ever uses the node). The log file is
written to disk but, optionally, may be automatically emailed
to the node administrator. In the case where there are
multiple nodes on the same computer, all of the nodes share

the same log file and prefix each log entry with a unique
node identifier.

iTrust also utilizes compiled-in modules, including cURL,
SQLite, and the PHP Extension Community Library (PECL)
for HTTP, as described below.

The cURL functions are used primarily for inter-node
communication and resource-specific actions. When a re-
source is added to a node, a call may be made to that
resource’s URL to scan for metadata automatically. cURL
automatically follows HTTP redirects and resolves file
dependencies (such as HTML frame sources and image
sources). Both the fetched text and the fetched images are
accessible to the Java jar files, as described below.

SQLite is used for all administrative information such
as node, metadata and resource information. For example,
the node membership is stored in a database table, and
the relationships between the metadata and the resources
are stored in a normalized table. SQL constraints enforce
several fundamental iTrust features, such as non-duplicate
node addresses in the membership and unique resource
URLs. Use of SQLite as a PHP module, instead of MySQL
or PostgreSQL servers, aids with the rapid deployment of
iTrust nodes. iTrust works on any reasonably modern Web
host, because the file-as-a-database model of SQLite requires
only minimal local write privileges.

The PHP Extension Community Library (PECL) for
HTTP is an external compiled-in module used for inter-
node search and metadata queries. A requesting node may
use PECL HTTP to send a POST statement to a potential
source node to search for the metadata that match the user’s
metadata query.

2.2 Application Infrastructure
The key iTrust methods reside in the application in-

frastructure; indeed, all of the node- and resource-related
functions exist in this component. The infrastructure is
divided into three parts: metadata-related functions, node-
and resource-related functions, and Java jar files. All parts
interact with the Web server foundation, whereas only some
functions are exposed to the public interface component.



Fig. 4: The iTrust system, which comprises (a) the Web serverfoundation, (b) the application infrastructure, and (c) the public interface.

The creation and distribution of metadata, both internal
and inter-node, are handled by the metadata-related func-
tions. A node generates metadata from existing resources
by invoking the metadata XML engine, which exhaustively
scans all resources and creates an XML list describing the
relationship between the metadata and the resource. Other
metadata-related functions deal with the distribution of the
XML list to other nodes, or with the receipt of XML lists
distributed by other nodes. In the latter case, the received
XML lists are scanned, and the metadata are inserted into
the current node. In this way, the metadata are replicated
among participating nodes.

Node- and resource-related functions, also known as
helper functions, deal with bookkeeping tasks. These func-
tions include functions that insert nodes into the mem-
bership, insert keywords into the database, and upload or
fetch resources. Resources can be tagged with metadata
manually by the user, or they can be automatically scanned
for metadata, depending on the user’s preferences. Node
querying and query relaying are also handled by the helper
functions (mostly through the use of PECL HTTP). All user
variables (per session) and global administrative variables
are stored.

Java jar files are used to generate metadata quickly and
easily, and to provide the user with many conveniences.
Apache’s Tika and Lucene packages are used to generate
metadata from resources automatically and efficiently, in
the case where the user chooses not to generate metadata
manually. The WordNet dictionary is used to provide the
user with functions, such as spell checking and synonym
suggestions.

2.3 Public Interface

The public interface, through which the users and the
system administrator interact with iTrust, is divided between
human and computer interfaces. Computer interfaces (dark
boxes on the right in Figure 4) handle all inter-node commu-
nication such as queries, resource distribution, and metadata
list distribution. All of the other interfaces (clear boxeson
the right in Figure 4) are human-oriented and consist of PHP
driven HTML Web pages; in fact, all human interaction with
iTrust is through Web pages.

Administration is performed through the tools Web pages
and other Web pages. Tools allow an administrator to add
nodes or metdata keywords using simple HTML form text
boxes. Adding resources requires uploading a file (form
file input) or providing a URL (form text box input). User
settings and statistics Web pages provide feedback to the
administrator about the membership size, resource count,etc.
An administrator may generate and distribute metadata XML
lists or update the participating nodes’ metadata lists. An
administrator may also request that a node be removed from
a node’s membership. In this case, the request is activated
through a human interface, and the request is distributed
through the iTrust network using computer interfaces.

The most used feature of iTrust is the human interface
for searching, where a user can enter a search query to
request a resource. The query is sent from the current node
to participating nodes using computer interfaces in a simple
inbox-type fashion. Participating nodes read their inbox for
queries, send back a response if there is a match, and
independently decide whether to relay the query.



3. Performance Evaluation
In the performance evaluation, we consider the probabil-

ity of a match, using both analysis and simulation based
on our implementation of iTrust. We assume that all of
the participating nodes have the same membership set. In
addition, we assume that the Internet is reliable and that
all of the participating nodes have enough memory to store
the source files and the metadata. We randomly select nodes
without repetition from the membership set for distribution
of the metadata and requests. If a node receives a request
and it holds the metadata that matches the metadata in the
request, we say that the node has a match.

3.1 Probabilistic Analysis
First, we consider the probability that a node has a match,

when all of the participating nodes are operational. Then, we
consider the probability that a node has a match, when some
of the participating nodes are not operational.

3.1.1 Probability that a node has a match when all of
the nodes are operational

In an iTrust network with a membership ofn nodes, we
distribute the metadata tom nodes and the requests tor
nodes. The probabilityp that a node has a match then is:

p = 1 −
n − m

n

n − 1 − m

n − 1
. . .

n − r + 1 − m

n − r + 1
(1)

Equation (1) holds forn ≥ m+r. If m+r > n, thenp = 1.
The formula is obtained as follows.

If n ≥ m + r, first we find the probabilityq of no match
on any of ther trials at ther nodes to which the requests
are delivered. The probability of no match on the first trial
is n−m

n
. The probability of no match on the second trial is

n−1−m

n−1 , and so on. The probability of no match on therth
trial is n−r+1−m

n−r+1 . Thus, the probabilityq of no match on
any of ther trials is:

q =
n − m

n

n − 1 − m

n − 1
. . .

n − r + 1 − m

n − r + 1
(2)

and the probabilityp of a match on one or more of ther
trials is:

p = 1 − q

= 1 −
n − m

n

n − 1 − m

n − 1
. . .

n − r + 1 − m

n − r + 1
(3)

If m+r > n, then the subset of nodes to which the request
is delivered and the subset of nodes to which the metadata
are delivered intersect in at least one node and, thus,p = 1.

3.1.2 Probability that a node has a match when not all
of the nodes are operational

If x represents the proportion of then nodes that are
operational (and, thus,1−x represents the proportion of the

n nodes that are not operational), then the probability p that
a node has a match is:

p = 1 −
n − mx

n

n − 1 − mx

n − 1
. . .

n − r + 1 − mx

n − r + 1
(4)

Equation (4) holds forn ≥ mx + r. If mx + r > n, then
p = 1. This formula is obtained as follows.

If n ≥ mx + r, then the probability of no match on the
first trial is n(1−x)+(n−m)x

n
=

n−mx

n
. The probability of

no match on the second trial is(n−1)(1−x)+(n−1−m)x
n−1 =

n−1−mx

n−1 , and so on. The probability of no match on the rth

trial is (n−r+1)(1−x)+(n−r+1−m)x
n−r+1 =

n−r+1−mx

n−r+1 . Thus, the
probability q of no match on any of ther trials because all
of the r nodes that receive the request are not operational
or do not hold the metadata is:

q =
n − mx

n

n − 1 − mx

n − 1
. . .

n − r + 1 − mx

n − r + 1
(5)

and the probabilityp that one or more of ther nodes that
receives the request is operational and has a match is:

p = 1 − q

= 1 −
n − mx

n

n − 1 − mx

n − 1
. . .

n − r + 1 − mx

n − r + 1
(6)

If mx + r > n, then the subset of nodes to which the
request is delivered and the subset of nodes to which the
metadata are delivered intersect in at least one node and,
thus,p = 1.

3.2 Simulation Based on Implementation
Using our implementation of iTrust described in Section 2,

we performed simulation experiments to validate Equations
(1) and (4). In our simulation, we used libCURL (which is
a free client-side URL transfer library for transferring data
using various protocols) to collect the match probabilities.

Before we run our simulation program, we provide the
following input to the program: the numbern of nodes
in the membership, the numberm of nodes for metadata
distribution, the numberr of nodes for request distribution,
and the proportionx of operational nodes.

First, the simulation program clears the data from the
SQLite databases. Next, the program adds the nodes to
the membership. Once all of the nodes are added to the
membership, we call the source node to upload a file and
the program then creates the corresponding metadata. Then,
the simulation program randomly selects nodes for metdata
distribution, and distributes the metadata to those nodes.
Next, the program randomly selects the nodes for request
distribution, and distributes the requests to those nodes.
Then, the simulation program waits for 5 seconds. If one
or more nodes has replied back to the simulation program,
it means that there is a match and the program returns1;
otherwise, there is no match and the program returns0.

We repeat the same process 100 times for the source
nodes and correspondingly for the requesting nodes, and



Fig. 5: Match probability vs. number of nodes
for distribution of metadata and requests with 36
participating nodes, all of which are operational.

Fig. 6: Match probability vs. number of nodes
for distribution of metadata and requests with 72
participating nodes, all of which are operational.

Fig. 7: Match probability vs. number of nodes for
distribution of metadata and requests with 144
participating nodes, all of which are operational.

plot the mean results in our simulation graphs. We collected
simulation data for 36, 72 and 144 participating nodes, when
all of the nodes are operational. We also collected simulation
data for 144 participating nodes when 100%, 80% and 60%
of the nodes are operational.

3.3 Performance Evaluation Results
First, we consider the analytical and simulation results for

the probability of a match, as the number of participating
nodes increases. Then, we consider the analytical and simu-
lation results for the probability of a match, as the proportion
of non-operational nodes increases.

3.3.1 Increasing the number of participating nodes

Figures 5, 6 and 7 show both the analytical results and
the simulation results for 36, 72 and 144 participating
nodes, all of which are operational. The analytical curves
obtained from Equation (1) are shown in the background
(light curves), and the simulation curves obtained from our
iTrust implementation are shown in the foreground (dark
curves). We see from these figures that the simulation results
are very close to the analytical results.

Figure 5 shows the match probability versus the number of
nodes for distribution of metadata and requests in a network
when 100% of the 36 nodes are operational. From the figure,
we see that the probability increases as the number of nodes
to which the metadata and requests are distributed increases.
The reason is that the more nodes to which the metadata and
requests are distributed, the more matches there are.

When the membership contains more nodes, the match
probability asymptotically approaches1 more slowly than
for a membership with fewer nodes. That is, if we distribute
the metadata and the requests to the same number of nodes,
but the membership contains more nodes, the probability of
a match is less than that for a membership with fewer nodes.

When we increase the membership to 72 nodes in Fig-
ure 6, the curves approach1 more slowly than do the curves
in Figure 5 for a membership containing 36 nodes. In other
words, as we increase the membership, we must distribute
the metadata and the requests to more nodes to obtain a
higher match probability. Similarly, in Figure 7, when we
increase the membership to 144 nodes, we see that the curves

grow even more slowly than do the curves in the 36 node
and 72 node networks.

Suppose now, for example, that we want to achieve a
0.98 match probability, in these three cases, which involve
36, 72 and 144 nodes all of which are operational. In the
36 node network, we need to distribute the metadata and
the requests to only 10 nodes to achieve a0.98 match
probability. However, in the 72 node network, we need to
distribute the metadata and the requests to 15 nodes to
achieve a0.98 match probability, whereas in the 144 node
network, we need to distribute the metadata and the requests
to 22 nodes to achieve a0.98 match probability.

Thus, when we distribute the metadata and the requests
to only a few nodes, the match probability is lower and
the requester is unlikely to receive multiple responses from
multiple matching nodes. When we distribute the metadata
and the requests to more nodes, the match probability is
higher and the requester will more likely receive multiple
responses from multiple matching nodes. For a network with
more participating nodes, the match probability grows more
slowly than the match probability for a network with fewer
participating nodes.

3.3.2 Increasing the number of non-operational nodes

Figures 8, 9 and 10 show both the analytical results and
the simulation results for 144 nodes, when 100%, 80% and
60% of the participating nodes are operational,i.e., when
0%, 20% and 40% of the participating nodes are non-
operational. The analytical curves obtained from Equation
(4) are shown in the background (light curves), and the
simulation curves obtained from our iTrust implementation
are shown in the foreground (dark curves). Again, we see
from these figures that the simulation results are very close
to the analytical results.

In Figures 8, 9 and 10, we see that the match probability
curves increase as the number of nodes for distribution of
metadata and requests increases. However, if we compare
Figure 8 with Figure 9, we notice that the curves in Figure 8
asymptotically approach1 faster than the curves in Figure 9.
The reason is that in Figure 8 every node is operational,
whereas in Figure 9 only 80% of the nodes are operational.
Therefore, for distribution of metadata and requests to the



Fig. 8: Match probability vs. number of nodes
for distribution of metadata and requests with
144 participating nodes where 100% of the
nodes are operational.

Fig. 9: Match probability vs. number of nodes
for distribution of metadata and requests with
144 participating nodes where 80% of the nodes
are operational.

Fig. 10: Match probability vs. number of nodes
for distribution of metadata and requests with
144 participating nodes where 60% of the nodes
are operational.

same number of nodes, the probability of a match in Figure 8
is generally higher than it is Figure 9. Similarly, in Figure10,
where only 60% of the nodes are operational, the curves
asymptotically approach1 more slowly than the curves in
Figures 8 and 9.

Suppose now, for example, that the metadata and the
requests are distributed to 20 nodes, in these three cases, all
of which involve 144 nodes. If 100% of the 144 nodes are
operational, the probability of a match is0.96. But, if 80%
of the 144 nodes are operational, the probability of a match
is 0.92, whereas if 60% of the 144 nodes are operational, the
probability of a match is is0.85, which is still quite good.

Thus, when all of the participating nodes are operational,
the match probability is higher and the requester will likely
receive multiple responses from multiple matching nodes.
When there are fewer operational nodes, the match probabil-
ity is lower and the requester is less likely to receive multiple
responses from multiple matching nodes. Consequently, we
must distribute the metadata and the requests to more nodes
as the number of non-operational nodes increases, to obtain
higher match probabilities. Nonetheless, iTrust retains sig-
nificant utility even when not all of the nodes are operational,
demonstrating that iTrust is quite robust.

4. Related Work
Centralized search engines for Internet search, such

as Google [7], store metadata for information in a
centralized index, and match queries containing keywords
against the metadata at the central site. Centralized
search engines are used commercially for Internet search,
because they are efficient and scalable; however, they are
vulnerable to manipulation by administrators. Centralized
publish/subscribe systems also use a centralized index [4],
against which queries are matched, raising the same issues
of trust of the centralized site.

Risson and Moors [14] provide a survey of search in peer-
to-peer networks, and Mischke and Stiller [12] provide a
taxonomy of distributed search in such networks. Distributed
publish/subscribe strategies are categorized as either struc-
tured based on managed overlay networks, or as unstructured
based on gossiping and randomization. The structured ap-

proach is more efficient than the unstructured approach, but
it involves administrative control with a consequent risk of
manipulation. iTrust falls within the unstructured distributed
search category.

Gnutella [8], one of the first unstructured networks, uses
flooding of requests to find information. An extension of
Gnutella involves supernodes [19], which improves effi-
ciency but incurs some of the trust risks of centralized
strategies. Freenet [2] is more sophisticated and efficient
than Gnutella, because it learns from previous requests. In
Freenet, nodes that successfully respond to requests subse-
quently receive more metadata and more requests. Thus, it is
easy for a group of untrustworthy nodes to conspire together
to gather most of the searches into their group, rendering
Freenet vulnerable to subversion.

Sarsharet al. [15] combine random walks and data
replication with a two-phase query scheme in a Gnutella-like
network. BubbleStorm [16] replicates both queries and data,
and combines random walks with flooding. GIA [1] com-
bines biased random walks with one-hop data replication. Lv
et al. [10] show that path replication and random replication
are near-optimal in unstructured peer-to-peer networks. Like
these systems, iTrust exploits randomization and replication.

Ferreiraet al. [6] use a random-walk strategy to replicate
both queries and data to the square root of the number of
nodes in the network. Zhong and Shen [20] use random
walks for requests, where the number of nodes visited by
a request is proportional to the square root of the request
popularity. Cooper [3] exploits search trees whose node
degrees approximate the square root of the size of the
network. Like these researchers, we can also exploit the
square root function in iTrust.

Pub-2-Sub [17] is a publish/subscribe service for unstruc-
tured peer-to-peer networks of cooperative nodes. Instead
of gossiping, Pub-2-Sub uses directed routing to distribute
subscription and publication messages to the nodes. None
of the above unstructured systems is particularly concerned
with trust, as is iTrust. Rather, their objective is efficiency,
which is not the primary concern of iTrust.

Systems for social networks [11], [13] exploit the trust
that members have in other members, and route information



and requests based on relationships among members. Social
networks, like Facebook [5], are centrally administered and,
thus, depend on benign administrators.

There exist a few systems for social networks that, like
iTrust, are concerned with trust. OneSwarm [9] is a peer-
to-peer system that allows data to be shared either pub-
licly or anonymously, using a combination of trusted and
untrusted nodes. OneSwarm is part of an effort to provide
an alternative to cloud computing that does not depend on
centralized trust. Its initial goal is to protect the privacy of
the users, which iTrust does not aim to do. Quasar [18] is
a probabilistic publish/subscribe system for social networks.
The authors note that “an unwarranted amount of trust is
placed on these centralized systems to not reveal or take
advantage of sensitive information.” Thus, the trust objective
of Quasar is quite different from that of iTrust.

5. Conclusions and Future Work
We have described the iTrust system, a distributed search

and retrieval system for the Internet with no centralized
mechanisms and no centralized control. iTrust is particularly
valuable for individuals who fear that the conventional
centralized Internet search mechanisms might be subverted
or censored. The very existence of iTrust can help to
deter attempts to subvert the conventional Internet search
mechanisms, and can provide assurances to individuals that
the information they seek will be available to them.

In the future, we plan to evaluate the effectiveness, ef-
ficiency, scalability, and reliability of the iTrust systemin
PlanetLab. In addition, we plan to conduct further proba-
bilistic analyses and to investigate a range of possible attacks
on iTrust and countermeasures to such attacks. Our objective
for iTrust is a network in which individual nodes can detect
a potential attack, and can adapt to an attack to maintain
trustworthy distributed search and retrieval even when the
network is under attack.

Acknowledgment
This research was supported in part by U.S. National

Science Foundation gran number NSF CNS 10-16193.

References
[1] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker,

“Making Gnutella-like P2P systems scalable,”Proceedings of the ACM
SIGCOMM Applications Technologies, Architectures and Protocols for
Computer Communications Conference, Karlsruhe, Germany, August
2003, pp. 407–418.

[2] I. Clarke, O. Sandberg, B. Wiley and T. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,”Proceedings of
the Workshop on Design Issues in Anonymity and Unobservability,
Lecture Notes in Computer Science, Berkeley, CA, July 2000,pp. 46–
66.

[3] B. F. Cooper, “Quickly routing searches without having to move
content,” Proceedings of the 4th International Workshop on Peer-to-
Peer Systems, Lecture Notes in Computer Science 3640, Ithaca, NY,
February 2005, pp. 163–172.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui and A. M. Kermarrec, “The
many faces of publish/subscribe,”ACM Computing Surveys35:2, June
2003, pp. 114–131.

[5] Facebook, http://www.facebook.com
[6] R. A. Ferreira, M. K. Ramanathan, A. Awan, A. Grama and S.

Jagannathan, “Search with probabilistic guarantees in unstructured
peer-to-peer networks,”Proceedings of the Fifth IEEE International
Conference on Peer-to-Peer Computing, Konstanz, Germany, August
2005, pp. 165–172.

[7] Google, http://www.google.com
[8] Gnutella, http://gnutella.wego.com/
[9] T. Isdal, M. Piatek, A. Krishnamurthy and T. Anderson, “Privacy

preserving P2P data sharing with OneSwarm,” Technical Report UW-
CSE, Department of Computer Science, University of Washington,
2009.

[10] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, “Search and
replication in unstructured peer-to-peer networks,”Proceedings of the
16th ACM International Conference on Supercomputing, Baltimore,
MD, November 2002, 84–95.

[11] S. Marti, P. Ganesan and H. Garcia-Molina, “SPROUT: P2Prouting
with social networks,”Proceedings of Current Trends in Database
Technology Workshop, Lecture Notes in Computer Science 3268,
November 2004, pp. 425–435.

[12] J. Mischke and B. Stiller, “A methodology for the designof distributed
search in P2P middleware,”IEEE Network18:1, January 2004, pp. 30–
37.

[13] A. Mislove, K. P. Gummadi and P. Druschel, “Exploiting social
networks for Internet search,”Proceedings of the 5th Workshop on
Hot Topics in Networks, Irvine, CA, November 2006.

[14] J. Risson and T. Moors, “Survey of research towards robust peer-
to-peer networks: Search methods,” Technical Report UNSW-EE-P2P-
1-1, University of New South Wales, September 2007, RFC 4981,
http://tools.ietf.org/html/rfc4981

[15] N. Sarshar, P. O. Boykin and V. P. Roychowdhury, “Percolation search
in power law networks: Making unstructured peer-to-peer networks
scalable,” Proceedings of the 4th International Conference on Peer-
to-Peer Computing, Zurich, Switzerland, August 2004, pp. 2–9.

[16] W. W. Terpstra, J. Kangasharju, C. Leng and A. P. Buchman, “Bub-
bleStorm: Resilient, probabilistic, and exhaustive peer-to-peer search,”
Proceedings of the ACM SIGCOMM Conference on Applications,Tech-
nologies, Architectures and Protocols for Computer Communications,
Kyoto, Japan, August 2007, pp. 49–60.

[17] D. A. Tran and C. Pham, “Enabling content-based publish/subscribe
services in cooperative P2P networks,”Computer Networks52:11,
August 2010, pp. 1739-1749.

[18] B. Wong and S. Guha, “Quasar: A probabilistic publish-subscribe
system for social networks,”Proceedings of the 7th International
Workshop on Peer-to-Peer Systems, Tampa Bay, FL, February 2008.

[19] B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer
networks,”Proceedings of the 22nd IEEE International Conference on
Distributed Computing Systems, Vienna, Austria, July 2002, pp. 5–14.

[20] M. Zhong and K. Shen, “Popularity-biased random walks for peer-
to-peer search under the square-root principle,”Proceedings of the
5th International Workshop on Peer-to-Peer Systems, Lecture Notes
in Computer Science 4490, 2006.


